我想写一份实验报告。实验目的是:掌握特征数据类型的应用,掌握文件的应用,使用matplotlib绘制图形,具备解决实际生活或专业问题的能力。实验内容需要包括:问题描述、算法设计、代码、实验收获。请给我写一份实验报告。另外,请不要使用pandas库导入数据。

时间: 2024-02-13 22:01:56 浏览: 57
好的,下面是我为你撰写的实验报告。 实验目的: 本次实验的目的是帮助学生掌握特征数据类型的应用,掌握文件的应用,使用matplotlib绘制图形,具备解决实际生活或专业问题的能力。 问题描述: 本次实验选择分析人口普查数据,并通过绘制图表展示出不同年龄段、性别、职业等因素对收入水平的影响。具体而言,我们要回答以下问题: 1. 各年龄段人口占比分布图 2. 不同性别的收入水平对比图 3. 不同职业的收入水平对比图 算法设计: 在本次实验中,我们将手动读取数据并进行数据清洗和处理,然后使用Matplotlib库绘制各种图表来展示数据。 代码: 以下是本次实验的代码实现: ``` python import matplotlib.pyplot as plt # 读取数据 with open('population.txt', 'r', encoding='utf-8') as f: lines = f.readlines() # 数据清洗和处理 data = [] for line in lines: line = line.strip() if not line: continue fields = line.split(',') age = fields[0] sex = fields[1] job = fields[2] income = fields[3] count = int(fields[4]) data.append((age, sex, job, income, count)) # 统计年龄段人口占比 age_data = {} total_count = 0 for item in data: age = item[0] count = item[4] total_count += count if age in age_data: age_data[age] += count else: age_data[age] = count labels = age_data.keys() sizes = [age_data[label] for label in labels] explode = [0.1 if label == '25-34' else 0 for label in labels] plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.title('各年龄段人口占比分布图') plt.show() # 统计不同性别的收入水平对比 sex_data = {} for item in data: sex = item[1] income = item[3] count = item[4] if sex not in sex_data: sex_data[sex] = {} if income in sex_data[sex]: sex_data[sex][income] += count else: sex_data[sex][income] = count labels = sex_data['男'].keys() men_sizes = [sex_data['男'][label] for label in labels] women_sizes = [sex_data['女'][label] for label in labels] x = range(len(labels)) width = 0.35 fig, ax = plt.subplots() ax.bar(x - width/2, men_sizes, width, label='男') ax.bar(x + width/2, women_sizes, width, label='女') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() plt.title('不同性别的收入水平对比图') plt.show() # 统计不同职业的收入水平对比 job_data = {} for item in data: job = item[2] income = item[3] count = item[4] if job not in job_data: job_data[job] = {} if income in job_data[job]: job_data[job][income] += count else: job_data[job][income] = count labels = job_data.keys() income_levels = ['1-3万', '3-5万', '5-7万', '7-10万', '10万以上'] x = range(len(labels)) width = 0.1 fig, ax = plt.subplots() for i in range(len(income_levels)): income_level = income_levels[i] sizes = [job_data[label].get(income_level, 0) for label in labels] ax.bar(x + i*width, sizes, width, label=income_level) ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() plt.title('不同职业的收入水平对比图') plt.show() ``` 实验收获: 通过本次实验,我们掌握了特征数据类型的应用和文件的应用,学会了如何手动读取数据并进行数据处理和Matplotlib库进行图表绘制,能够解决实际生活或专业问题。同时,我们也意识到了数据处理和可视化的重要性,这可以帮助我们更好地理解数据并做出更准确的决策。 总之,本次实验为我们提供了一个实践的机会,加深了我们对数据处理和可视化的理解,提高了我们的实际操作能力和解决问题的能力。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现在tkinter中使用matplotlib绘制图形的方法示例

`tkinter`是Python的标准GUI库,而`matplotlib`则是广泛使用的数据可视化库。本篇内容将详细讲解如何在`tkinter`环境中利用`matplotlib`来绘制图形,特别以绘制正弦曲线为例。 首先,确保已经安装了`tkinter`和`...
recommend-type

Python使用matplotlib绘制多个图形单独显示的方法示例

当需要在同一份代码中绘制多个图形时,`matplotlib`提供了灵活的方式来单独展示每个图形,避免它们在同一个窗口中重叠。下面我们将深入探讨如何使用`matplotlib`绘制多个图形单独显示。 首先,我们要导入必要的库,...
recommend-type

Python使用matplotlib实现绘制自定义图形功能示例

在Python编程中,matplotlib库是用于数据可视化的重要工具,它提供了丰富的图形绘制功能。本示例将详细解析如何使用matplotlib来实现自定义图形的绘制,包括贝塞尔曲线、多边形和其他复杂形状。 首先,我们需要导入...
recommend-type

Python实现读取txt文件中的数据并绘制出图形操作示例

本示例主要讲解如何使用Python读取txt文件中的数据,并利用这些数据绘制图形。在Python中,读取txt文件通常涉及`open()`函数和文件处理模式,而绘图则可能需要第三方库如matplotlib。 首先,我们来探讨如何从txt...
recommend-type

使用Python中的matplotlib库读取csv文件绘制混合图

接下来,我们将同一列的数据分别在四个子图上以不同的图表类型绘制出来:条形图(bar)、折线图(line)、箱型图(box)和饼图(pie)。`s`是数据列的引用,`plot`方法可以接受`ax`参数指定绘制的轴,`kind`参数定义...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"