opencv读取ros仿真摄像头图像如何进行
时间: 2023-12-21 09:06:21 浏览: 148
可以使用ROS中的image_transport模块将ROS图像话题转换为OpenCV格式的图像。以下是一个简单的例子:
```python
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
bridge = CvBridge()
def image_callback(msg):
# 将ROS图像消息转换为OpenCV格式的图像
img = bridge.imgmsg_to_cv2(msg, desired_encoding="passthrough")
# 在图像上进行处理
# ...
# 显示图像
cv2.imshow("Image window", img)
cv2.waitKey(1)
rospy.init_node('image_listener')
image_sub = rospy.Subscriber("/camera/image_raw", Image, image_callback)
rospy.spin()
```
其中,`/camera/image_raw`是ROS中图像话题的名称,需要根据实际情况进行修改。在`image_callback`函数中,我们使用`bridge.imgmsg_to_cv2`将ROS图像消息转换为OpenCV格式的图像,然后可以在图像上进行处理和显示。
相关问题
请用c++写一段ros程序,gazebo仿真环境下有一个realsense深度相机,要求读取深度相机的深度图像和rgb图像,两者的话题名分别为/camera3/depth/image_raw和/camera3/rgb/image_raw,深度图片的编码格式为32FC1,读取图片并分别显示
好的,这是一个简单的ROS程序,可以读取realsense深度相机的深度图像和rgb图像,并在rviz中分别显示。
```cpp
#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/image_encodings.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/highgui/highgui.hpp>
// 定义全局变量,用于存储深度图像和RGB图像
cv::Mat depth_image;
cv::Mat rgb_image;
// 深度图像的回调函数
void depthCallback(const sensor_msgs::ImageConstPtr& msg)
{
// 将ROS消息转换为OpenCV图像
cv_bridge::CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_32FC1);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
// 保存深度图像
depth_image = cv_ptr->image;
}
// RGB图像的回调函数
void rgbCallback(const sensor_msgs::ImageConstPtr& msg)
{
// 将ROS消息转换为OpenCV图像
cv_bridge::CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
// 保存RGB图像
rgb_image = cv_ptr->image;
}
int main(int argc, char** argv)
{
// 初始化ROS节点
ros::init(argc, argv, "realsense_reader");
ros::NodeHandle nh;
// 订阅深度图像和RGB图像的话题
ros::Subscriber depth_sub = nh.subscribe("/camera3/depth/image_raw", 1, depthCallback);
ros::Subscriber rgb_sub = nh.subscribe("/camera3/rgb/image_raw", 1, rgbCallback);
// 创建OpenCV窗口
cv::namedWindow("Depth Image");
cv::namedWindow("RGB Image");
// 循环读取深度图像和RGB图像,并在OpenCV窗口中显示
while (ros::ok())
{
// 显示深度图像
if (!depth_image.empty())
{
cv::imshow("Depth Image", depth_image);
}
// 显示RGB图像
if (!rgb_image.empty())
{
cv::imshow("RGB Image", rgb_image);
}
// 等待按键,退出程序
char key = cv::waitKey(10);
if (key == 27) // ESC键
{
break;
}
// 处理ROS回调函数
ros::spinOnce();
}
// 销毁OpenCV窗口
cv::destroyAllWindows();
return 0;
}
```
需要注意的是,该程序中使用了OpenCV库来显示深度图像和RGB图像,因此需要在CMakeLists.txt文件中添加OpenCV的依赖项。完整的CMakeLists.txt文件如下所示:
```cmake
cmake_minimum_required(VERSION 2.8.3)
project(realsense_reader)
find_package(catkin REQUIRED COMPONENTS
roscpp
sensor_msgs
cv_bridge
image_transport
)
find_package(OpenCV REQUIRED)
catkin_package(
CATKIN_DEPENDS roscpp sensor_msgs cv_bridge image_transport
)
include_directories(
${catkin_INCLUDE_DIRS}
${OpenCV_INCLUDE_DIRS}
)
add_executable(${PROJECT_NAME} src/realsense_reader.cpp)
target_link_libraries(${PROJECT_NAME}
${catkin_LIBRARIES}
${OpenCV_LIBRARIES}
)
install(TARGETS ${PROJECT_NAME}
RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)
```
另外,需要在.launch文件中启动Gazebo仿真环境和realsense深度相机节点,并将/camera3/depth/image_raw和/camera3/rgb/image_raw话题分别映射到程序中定义的回调函数中。完整的.launch文件如下所示:
```xml
<launch>
<!-- 启动Gazebo仿真环境 -->
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find realsense_gazebo)/worlds/realsense_world.world"/>
</include>
<!-- 启动realsense深度相机节点 -->
<node name="realsense_node" pkg="realsense2_camera" type="realsense2_camera_node">
<param name="serial_no" value="123456789"/>
<param name="enable_depth" value="true"/>
<param name="enable_color" value="true"/>
<param name="depth_height" value="480"/>
<param name="depth_width" value="640"/>
<param name="color_height" value="480"/>
<param name="color_width" value="640"/>
<param name="depth_fps" value="30"/>
<param name="color_fps" value="30"/>
</node>
<!-- 映射/camera3/depth/image_raw话题 -->
<node name="depth_image" pkg="image_transport" type="republish">
<remap from="/image_raw" to="/camera3/depth/image_raw"/>
<remap from="/compressed" to="/camera3/depth/compressed"/>
<remap from="/compressedDepth" to="/camera3/depth/compressedDepth"/>
<remap from="/theora" to="/camera3/depth/theora"/>
</node>
<!-- 映射/camera3/rgb/image_raw话题 -->
<node name="rgb_image" pkg="image_transport" type="republish">
<remap from="/image_raw" to="/camera3/rgb/image_raw"/>
<remap from="/compressed" to="/camera3/rgb/compressed"/>
<remap from="/compressedDepth" to="/camera3/rgb/compressedDepth"/>
<remap from="/theora" to="/camera3/rgb/theora"/>
</node>
<!-- 启动realsense_reader节点 -->
<node name="realsense_reader" pkg="realsense_reader" type="realsense_reader"/>
</launch>
```
启动.launch文件后,即可在rviz中看到深度图像和RGB图像的显示。
请用c++写一段ros程序,gazebo仿真环境下有一个kinect深度相机,要求读取深度相机的深度图像和rgb图像,两者的话题名分别为/camera3/depth/image_raw和/camera3/rgb/image_raw,深度图片的编码格式为32FC1,读取图片并分别显示
好的,以下是示例代码,需要在ROS环境下使用:
```cpp
#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/image_encodings.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/highgui/highgui.hpp>
void depthCallback(const sensor_msgs::ImageConstPtr& msg)
{
if (msg->encoding != sensor_msgs::image_encodings::TYPE_32FC1) {
ROS_ERROR("Depth image has unsupported encoding: %s", msg->encoding.c_str());
return;
}
// Convert sensor_msgs/Image to OpenCV image
cv_bridge::CvImagePtr cv_ptr;
try {
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_32FC1);
} catch (cv_bridge::Exception& e) {
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
// Display depth image
cv::imshow("Depth Image", cv_ptr->image);
cv::waitKey(1);
}
void rgbCallback(const sensor_msgs::ImageConstPtr& msg)
{
// Convert sensor_msgs/Image to OpenCV image
cv_bridge::CvImagePtr cv_ptr;
try {
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::RGB8);
} catch (cv_bridge::Exception& e) {
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
// Display RGB image
cv::imshow("RGB Image", cv_ptr->image);
cv::waitKey(1);
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "kinect_image_viewer");
ros::NodeHandle nh;
// Subscribe to depth image topic
ros::Subscriber depth_sub = nh.subscribe("/camera3/depth/image_raw", 1, depthCallback);
// Subscribe to RGB image topic
ros::Subscriber rgb_sub = nh.subscribe("/camera3/rgb/image_raw", 1, rgbCallback);
// OpenCV window for showing images
cv::namedWindow("Depth Image");
cv::namedWindow("RGB Image");
ros::spin();
return 0;
}
```
这段代码会订阅深度图像和RGB图像的话题,并将其转换为OpenCV格式,然后使用OpenCV显示深度图像和RGB图像。注意,这里假设深度图像的编码格式为32FC1,RGB图像的编码格式为RGB8。如果实际情况不同,需要对代码进行相应修改。
阅读全文