使用LISTA进行信道估计python代码
时间: 2024-03-15 13:20:30 浏览: 163
LISTA(Learned Iterative Shrinkage and Thresholding Algorithm)是一种结合了神经网络和迭代阈值算法的信道估计方法,具有较高的精度和稳定性。下面是使用Python实现LISTA信道估计的代码示例:
```python
import numpy as np
import tensorflow as tf
# 生成随机信道矩阵H和待传输的信号x
M = 64 # 接收天线数
N = 128 # 发送天线数
K = 8 # 稀疏度
SNR_dB = 20 # 信噪比
H = np.random.randn(M, N)
x = np.zeros((N, 1))
idx = np.random.choice(N, K, replace=False)
x[idx, :] = np.random.randn(K, 1)
# 将信道矩阵H和信号x转化为张量
H_tf = tf.constant(H, dtype=tf.float32)
x_tf = tf.constant(x, dtype=tf.float32)
# 定义LISTA模型
def lista_model(H, x, T, alpha):
# 初始化网络权重和偏置
W1 = tf.Variable(tf.random_normal(shape=[N, M], stddev=0.1), dtype=tf.float32)
b1 = tf.Variable(tf.zeros(shape=[N, 1]), dtype=tf.float32)
W2 = tf.Variable(tf.random_normal(shape=[N, N], stddev=0.1), dtype=tf.float32)
b2 = tf.Variable(tf.zeros(shape=[N, 1]), dtype=tf.float32)
W3 = tf.Variable(tf.random_normal(shape=[M, N], stddev=0.1), dtype=tf.float32)
b3 = tf.Variable(tf.zeros(shape=[M, 1]), dtype=tf.float32)
# 定义LISTA迭代过程
def lista_iteration(y):
x_hat = tf.matmul(W1, y) + b1
x_hat = tf.nn.relu(x_hat)
for i in range(T):
x_hat = tf.matmul(W2, x_hat) + b2
x_hat = tf.nn.relu(x_hat)
x_hat = tf.matmul(W3, x_hat) + b3
x_hat = tf.matmul(H, x_tf) + alpha * (y - x_hat)
return x_hat
# 将LISTA迭代过程包装成TensorFlow图的节点
y_hat = tf.Variable(tf.zeros(shape=[M, 1]), dtype=tf.float32)
x_hat = lista_iteration(y_hat)
lista_op = tf.assign(y_hat, x_hat)
# 返回LISTA迭代过程的TensorFlow图的节点
return lista_op
# 定义训练过程
T = 20 # 迭代次数
alpha = 0.1 # 衰减因子
epochs = 1000 # 训练轮数
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
lista_op = lista_model(H_tf, x_tf, T, alpha)
mse_loss = tf.reduce_mean(tf.square(tf.abs(x_tf) - tf.abs(lista_op)))
train_op = optimizer.minimize(mse_loss)
# 进行训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
_, mse_loss_val = sess.run([train_op, mse_loss])
if epoch % 100 == 0:
print("Epoch %d, MSE loss: %f" % (epoch, mse_loss_val))
# 进行信道估计
x_hat = sess.run(lista_op)
# 输出结果
print("原始信号:")
print(x.T)
print("估计信号:")
print(x_hat.T)
```
在这个代码示例中,我们首先生成了一个随机的信道矩阵H和一个稀疏的待传输信号x。然后,我们使用TensorFlow定义了一个LISTA模型,其中包含了三个全连接层和一个迭代阈值算法。在训练过程中,我们使用Adam优化器最小化估计信号和原始信号之间的均方误差(MSE)。最后,我们使用训练好的模型进行信道估计,并输出估计结果。
阅读全文