textcnn声调识别模型pytorch代码
时间: 2023-09-30 19:05:38 浏览: 83
以下是使用 PyTorch 实现的 TextCNN 声调识别模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TextCNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, num_classes, num_filters):
super(TextCNN, self).__init__()
# Embedding layer
self.embedding = nn.Embedding(vocab_size, embedding_dim)
# Convolutional layers
self.conv1 = nn.Conv2d(1, num_filters, (2, embedding_dim))
self.conv2 = nn.Conv2d(1, num_filters, (3, embedding_dim))
self.conv3 = nn.Conv2d(1, num_filters, (4, embedding_dim))
# Pooling layer
self.pool = nn.MaxPool2d((3, 1))
# Fully connected layer
self.fc = nn.Linear(num_filters * 3, num_classes)
def forward(self, x):
x = self.embedding(x)
x = x.unsqueeze(1) # add channel dimension for conv2d input
# Convolutional layers with ReLU activation and max pooling
conv1_out = F.relu(self.conv1(x)).squeeze(3)
conv1_out = self.pool(conv1_out).squeeze(2)
conv2_out = F.relu(self.conv2(x)).squeeze(3)
conv2_out = self.pool(conv2_out).squeeze(2)
conv3_out = F.relu(self.conv3(x)).squeeze(3)
conv3_out = self.pool(conv3_out).squeeze(2)
# Concatenate the output of the convolutional layers
x = torch.cat((conv1_out, conv2_out, conv3_out), 1)
# Fully connected layer with softmax activation
x = self.fc(x)
x = F.softmax(x, dim=1)
return x
```
在上面的代码中,`TextCNN` 类继承了 `nn.Module` 类,其中实现了一个带有嵌入层、卷积层、池化层和全连接层的 TextCNN 声调识别模型。在 `__init__` 方法中,我们定义了各个层的结构和参数,而在 `forward` 方法中,我们对输入进行了嵌入处理、卷积、池化和全连接处理,最终输出一个概率分布向量。
在使用该模型时,我们需要指定以下参数:
- `vocab_size`:词汇表大小。
- `embedding_dim`:嵌入维度。
- `num_classes`:类别数。
- `num_filters`:卷积核数量。
例如,以下是使用该模型进行声调分类的示例代码:
```python
# Define model hyperparameters
vocab_size = len(word2id)
embedding_dim = 128
num_classes = 4
num_filters = 64
# Create TextCNN model
model = TextCNN(vocab_size, embedding_dim, num_classes, num_filters)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Train the model
for epoch in range(num_epochs):
for i, batch in enumerate(train_loader):
inputs, labels = batch
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 1000 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# Test the model
with torch.no_grad():
correct = 0
total = 0
for batch in test_loader:
inputs, labels = batch
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {} %'.format(100 * correct / total))
```
在上面的代码中,我们首先定义了模型的超参数,并创建了一个 `TextCNN` 对象。然后,我们定义了损失函数和优化器,使用训练集训练模型,并在测试集上评估模型的性能。
阅读全文