flink sql join 实时处理 demo
时间: 2023-07-06 22:30:00 浏览: 99
这是一个基于 Flink SQL 实现的简单实时处理的 demo,其中包含了一个 join 操作。
首先,我们需要准备两个数据流,分别是订单数据和用户数据。可以使用 Flink 的 DataStream API 从 Kafka 中读取实时数据,也可以使用模拟数据生成工具来生成测试数据。
```java
// 订单数据流
DataStream<Order> orderStream = env.addSource(new FlinkKafkaConsumer<>("order-topic", new OrderDeserializationSchema(), properties))
.assignTimestampsAndWatermarks(new OrderTimestampExtractor());
// 用户数据流
DataStream<User> userStream = env.addSource(new FlinkKafkaConsumer<>("user-topic", new UserDeserializationSchema(), properties))
.assignTimestampsAndWatermarks(new UserTimestampExtractor());
```
接下来,我们使用 Flink SQL 将两个数据流进行 join 操作。需要注意的是,Flink SQL 中的 join 操作需要指定连接条件和窗口类型。
```java
// 注册临时视图
tableEnv.createTemporaryView("orders", orderStream, $("orderId"), $("userId"), $("orderTime").rowtime());
tableEnv.createTemporaryView("users", userStream, $("userId"), $("userName"), $("gender"));
// 执行 join 操作
Table resultTable = tableEnv.sqlQuery("SELECT o.orderId, o.orderTime, u.userName FROM orders o " +
"JOIN users u ON o.userId = u.userId " +
"WHERE o.orderTime BETWEEN u.rowtime - INTERVAL '5' SECOND AND u.rowtime + INTERVAL '5' SECOND");
// 将结果转换为数据流
DataStream<Result> resultStream = tableEnv.toAppendStream(resultTable, Result.class);
```
最后,我们可以将结果数据流写入到 Kafka 中,或者直接打印出来。
```java
// 将结果写入到 Kafka 中
resultStream.addSink(new FlinkKafkaProducer<>("result-topic", new ResultSerializationSchema(), properties));
// 打印结果
resultStream.print();
```
完整的示例代码如下:
```java
// 定义订单数据结构
public class Order {
public long orderId;
public long userId;
public Timestamp orderTime;
}
// 定义用户数据结构
public class User {
public long userId;
public String userName;
public String gender;
}
// 定义 join 结果数据结构
public class Result {
public long orderId;
public Timestamp orderTime;
public String userName;
}
// 订单数据流的时间戳提取器
public class OrderTimestampExtractor extends BoundedOutOfOrdernessTimestampExtractor<Order> {
public OrderTimestampExtractor() {
super(Time.seconds(10));
}
@Override
public long extractTimestamp(Order element) {
return element.orderTime.getTime();
}
}
// 用户数据流的时间戳提取器
public class UserTimestampExtractor extends BoundedOutOfOrdernessTimestampExtractor<User> {
public UserTimestampExtractor() {
super(Time.seconds(10));
}
@Override
public long extractTimestamp(User element) {
return System.currentTimeMillis();
}
}
public class FlinkSQLJoinDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test-group");
// 订单数据流
DataStream<Order> orderStream = env.addSource(new FlinkKafkaConsumer<>("order-topic", new OrderDeserializationSchema(), properties))
.assignTimestampsAndWatermarks(new OrderTimestampExtractor());
// 用户数据流
DataStream<User> userStream = env.addSource(new FlinkKafkaConsumer<>("user-topic", new UserDeserializationSchema(), properties))
.assignTimestampsAndWatermarks(new UserTimestampExtractor());
// 注册临时视图
tableEnv.createTemporaryView("orders", orderStream, $("orderId"), $("userId"), $("orderTime").rowtime());
tableEnv.createTemporaryView("users", userStream, $("userId"), $("userName"), $("gender"));
// 执行 join 操作
Table resultTable = tableEnv.sqlQuery("SELECT o.orderId, o.orderTime, u.userName FROM orders o " +
"JOIN users u ON o.userId = u.userId " +
"WHERE o.orderTime BETWEEN u.rowtime - INTERVAL '5' SECOND AND u.rowtime + INTERVAL '5' SECOND");
// 将结果转换为数据流
DataStream<Result> resultStream = tableEnv.toAppendStream(resultTable, Result.class);
// 将结果写入到 Kafka 中
resultStream.addSink(new FlinkKafkaProducer<>("result-topic", new ResultSerializationSchema(), properties));
// 打印结果
resultStream.print();
env.execute("Flink SQL Join Demo");
}
}
```
阅读全文