mmdetection3d visualizer
时间: 2023-09-23 12:11:51 浏览: 144
MMDetection3D Visualizer是一个基于Python的3D目标检测可视化工具,它是MMDetection3D的一个子模块。MMDetection3D是一个用于3D目标检测的开源框架,它基于PyTorch实现。MMDetection3D Visualizer可以将3D点云数据和3D框标注可视化,同时提供了一些交互式功能,如旋转、缩放、平移等,帮助用户更好地理解和分析3D目标检测结果。
相关问题
禁用mmdetection3d visualizer
您可以通过注释掉 mmdet3d/tools/visualizer.py 文件中的代码来禁用 mmdetection3d visualizer。具体来说,您需要注释掉以下代码块:
```
from .visualizer import Visualizer
def show_result(points,
result,
dataset,
score_thr=0.3,
out_dir=None,
show=False,
snapshot=False,
iteration=None,
palette=None):
...
visualizer = Visualizer(dataset=dataset, **kwargs)
visualizer.visualize(points, result, out_dir, show, snapshot, iteration, palette)
```
将其改为:
```
# from .visualizer import Visualizer
def show_result(points,
result,
dataset,
score_thr=0.3,
out_dir=None,
show=False,
snapshot=False,
iteration=None,
palette=None):
...
# visualizer = Visualizer(dataset=dataset, **kwargs)
# visualizer.visualize(points, result, out_dir, show, snapshot, iteration, palette)
```
这样就禁用了 mmdetection3d visualizer。
mmdetection3D可视化代码
### MMDetection3D 可视化功能
为了实现 MMDetection3D 的可视化效果,通常需要利用其内置的绘图工具来展示点云数据以及预测的结果。这些工具能够帮助研究人员更好地理解模型的表现。
对于 MMDetection3D 来说,在 `mmdet3d` 库中有专门用于可视化的模块[^2]。通过调用特定的方法可以轻松完成对三维物体检测结果的渲染工作。以下是基于 Python 编写的简单示例代码片段:
```python
from mmdet3d.apis import inference_detector, init_detector
import numpy as np
import open3d.visualization.rendering as rendering
from open3d.cpu.pybind.geometry import PointCloud
from open3d.cpu.pybind.utility import Vector3dVector
def visualize_result(model, pcd_path):
result, data = inference_detector(model, pcd_path)
points = data['points']._data[0].numpy()
bboxes = result.pred_instances.bboxes.numpy()
vis = rendering.Visualizer()
# 加载点云数据
point_cloud = PointCloud()
point_cloud.points = Vector3dVector(points[:, :3])
mat = rendering.MaterialRecord()
mat.shader = "defaultUnlit"
mat.point_size = 2.0
vis.add_geometry(point_cloud, mat)
# 绘制边界框
for bbox in bboxes:
lines_set = create_line_set(bbox)
vis.add_geometry(lines_set)
vis.show_window_blocking()
def create_line_set(bbox):
line_set = o3d.geometry.LineSet()
corners = get_corners_from_bbox(bbox)
lines = [[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]]
colors = [[1, 0, 0] for i in range(len(lines))]
line_set.points = Vector3dVector(corners)
line_set.lines = Vector3dVector(lines)
line_set.colors = Vector3dVector(colors)
return line_set
if __name__ == "__main__":
config_file = 'configs/pointpillars/hv_pointpillars_secfpn_sbn-all_8xb6-160e_kitti-3d-car.py'
checkpoint_file = 'checkpoints/hv_pointpillars_secfpn_sbn-all_8xb6-160e_kitti-3d-car_20220920_161945.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')
pcd_path = './demo/data/kitti/training/velodyne_reduced/000000.bin'
visualize_result(model, pcd_path)
```
这段代码展示了如何使用 Open3D 进行点云和边界的绘制,并结合了 MMDetection3D 推理接口来进行实际的数据处理与显示操作。
阅读全文