原始slic算法的matlab示例代码
时间: 2023-05-20 08:05:40 浏览: 100
基于Matlab实现的SLIC算法.zip
以下是原始slic算法的matlab示例代码:
```matlab
function [L, num] = slic(I, K, m)
% I: input image
% K: number of superpixels
% m: compactness parameter
% Convert image to Lab color space
I = double(I);
[L, a, b] = RGB2Lab(I(:,:,1), I(:,:,2), I(:,:,3));
% Initialize cluster centers
[N, M] = size(L);
S = round(sqrt(N*M/K));
cx = S/2:S:N-S/2;
cy = S/2:S:M-S/2;
[X, Y] = meshgrid(cx, cy);
C = [X(:), Y(:)];
nc = size(C, 1);
% Initialize labels and distances
labels = zeros(N, M);
distances = inf(N, M);
% Iterate until convergence
while true
old_labels = labels;
old_distances = distances;
% Assign pixels to nearest cluster center
for i = 1:nc
x = C(i, 1);
y = C(i, 2);
x1 = max(x-S, 1);
x2 = min(x+S, N);
y1 = max(y-S, 1);
y2 = min(y+S, M);
D = (L(x1:x2, y1:y2)-L(x, y)).^2 + ...
(a(x1:x2, y1:y2)-a(x, y)).^2 + ...
(b(x1:x2, y1:y2)-b(x, y)).^2;
D = D + m*(1/S)^2*(X(x1:x2, y1:y2)-C(i, 1)).^2 + ...
m*(1/S)^2*(Y(x1:x2, y1:y2)-C(i, 2)).^2;
idx = D < distances(x1:x2, y1:y2);
distances(x1:x2, y1:y2) = idx.*D + ~idx.*distances(x1:x2, y1:y2);
labels(x1:x2, y1:y2) = idx*i + ~idx.*labels(x1:x2, y1:y2);
end
% Update cluster centers
for i = 1:nc
idx = labels == i;
if any(idx(:))
C(i, :) = mean([X(idx), Y(idx)]);
L(i) = mean(L(idx));
a(i) = mean(a(idx));
b(i) = mean(b(idx));
end
end
% Check for convergence
if all(labels(:) == old_labels(:)) && all(distances(:) == old_distances(:))
break;
end
end
% Output labels and number of superpixels
num = nc;
end
```
希望能对你有所帮助!
阅读全文