使用pytorch实现CNN和LSTM并列的文本分类代码并训练数据
时间: 2023-02-07 15:47:37 浏览: 143
pytorch实现用CNN和LSTM对文本进行分类方式
5星 · 资源好评率100%
使用 PyTorch 实现 CNN 和 LSTM 并列的文本分类的代码可以这样写:
```
import torch
import torch.nn as nn
class TextClassifier(nn.Module):
def __init__(self, vocab_size, embedding_dim, num_class):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.cnn = nn.Conv1d(embedding_dim, 128, 3, padding=1)
self.lstm = nn.LSTM(embedding_dim, 128, batch_first=True)
self.fc = nn.Linear(256, num_class)
def forward(self, x):
# x: (batch_size, seq_len)
x = self.embedding(x) # (batch_size, seq_len, embedding_dim)
x_cnn = self.cnn(x.transpose(1, 2)).max(dim=2)[0] # (batch_size, 128)
x_lstm, _ = self.lstm(x) # (batch_size, seq_len, 128)
x_lstm = x_lstm[:, -1, :] # (batch_size, 128)
x = torch.cat((x_cnn, x_lstm), dim=1) # (batch_size, 256)
x = self.fc(x) # (batch_size, num_class)
return x
model = TextClassifier(vocab_size=len(vocab), embedding_dim=100, num_class=2)
# 训练数据
def train(model, iterator, optimizer, criterion):
model.train()
for batch in iterator:
optimizer.zero_grad()
logits = model(batch.text)
loss = criterion(logits, batch.label)
loss.backward()
optimizer.step()
# 验证数据
def evaluate(model, iterator, criterion):
model.eval()
with torch.no_grad():
total_loss = 0
total_correct = 0
total_num = 0
for batch in iterator:
logits = model(batch.text)
loss = criterion(logits, batch.label)
total_loss += loss.item()
total_correct += (logits.argmax(dim=1) == batch.label).sum().item()
total_num += len(batch)
return total_loss / total_num, total_correct / total_num
```
其中,`vocab` 是词汇表,`batch.text` 和 `batch.label` 分别代表一个 mini-batch 的输入和标签。
然后你就可以
阅读全文