用混合遗传模拟退火算法求解TSP问题并给出实现代码
时间: 2024-02-11 16:05:57 浏览: 96
好的,下面是使用Python实现混合遗传模拟退火算法求解TSP问题的代码:
```python
import random
import math
class TSP:
def __init__(self, city_num, distance_matrix, pop_size=100, elite_rate=0.3, mutate_rate=0.1, t=1000, t_min=0.1, factor=0.95):
self.city_num = city_num
self.distance_matrix = distance_matrix
self.pop_size = pop_size
self.elite_num = int(pop_size * elite_rate)
self.mutate_num = int(pop_size * mutate_rate)
self.t = t
self.t_min = t_min
self.factor = factor
# 初始化种群
def init_population(self):
population = []
for i in range(self.pop_size):
chromosome = list(range(1, self.city_num + 1))
random.shuffle(chromosome)
population.append(chromosome)
return population
# 计算路径长度
def calc_distance(self, chromosome):
distance = 0
for i in range(self.city_num):
distance += self.distance_matrix[chromosome[i] - 1][chromosome[(i + 1) % self.city_num] - 1]
return distance
# 计算适应度
def calc_fitness(self, population):
fitness = []
for chromosome in population:
fitness.append(1 / self.calc_distance(chromosome))
return fitness
# 选择操作
def selection(self, population, fitness):
elite_chromosomes = []
elite_indices = sorted(range(len(fitness)), key=lambda k: fitness[k], reverse=True)[:self.elite_num]
for i in elite_indices:
elite_chromosomes.append(population[i])
return elite_chromosomes
# 交叉操作
def crossover(self, elite_chromosomes):
children = []
for i in range(self.pop_size - self.elite_num - self.mutate_num):
parent1, parent2 = random.sample(elite_chromosomes, 2)
child = [0] * self.city_num
start, end = sorted(random.sample(range(self.city_num), 2))
child[start:end] = parent1[start:end]
for i in range(self.city_num):
if parent2[i] not in child:
for j in range(self.city_num):
if child[j] == 0:
child[j] = parent2[i]
break
children.append(child)
return children
# 变异操作
def mutation(self, elite_chromosomes):
mutants = []
for i in range(self.mutate_num):
mutant = elite_chromosomes[random.randint(0, self.elite_num - 1)][:]
start, end = sorted(random.sample(range(self.city_num), 2))
mutant[start:end] = mutant[start:end][::-1]
mutants.append(mutant)
return mutants
# 模拟退火操作
def simulated_annealing(self, population):
temperature = self.t
while temperature > self.t_min:
for i in range(self.city_num):
j = random.randint(0, self.city_num - 1)
delta = self.calc_distance(population[i]) - self.calc_distance(population[j])
if delta > 0:
p = math.exp(-delta / temperature)
if random.random() < p:
population[i], population[j] = population[j], population[i]
temperature *= self.factor
return population
# 迭代操作
def iteration(self):
population = self.init_population()
for i in range(100):
fitness = self.calc_fitness(population)
elite_chromosomes = self.selection(population, fitness)
children = self.crossover(elite_chromosomes)
mutants = self.mutation(elite_chromosomes)
population = elite_chromosomes + children + mutants
population = self.simulated_annealing(population)
return elite_chromosomes[0]
if __name__ == '__main__':
# 生成随机距离矩阵
city_num = 10
distance_matrix = []
for i in range(city_num):
row = []
for j in range(city_num):
if i == j:
row.append(0)
else:
row.append(random.randint(1, 100))
distance_matrix.append(row)
tsp = TSP(city_num, distance_matrix)
best_path = tsp.iteration()
print('Best path:', best_path)
print('Best distance:', tsp.calc_distance(best_path))
```
在这个代码中,我们使用了Python的类来实现TSP问题的求解。在初始化函数中,我们定义了一些参数,包括城市数量、距离矩阵、种群大小、精英比例、变异比例、初始温度、最低温度和降温因子等。在求解过程中,我们首先使用遗传算法对种群进行优化,得到一部分优秀的个体;然后,使用模拟退火算法对这些个体进行进一步的优化,得到更好的优化结果。最终,我们输出最优路径和最短距离。
需要注意的是,这个代码仅供参考,实际使用时需要根据具体问题进行调整,包括参数的设置、遗传算法和模拟退火算法的具体实现方法等。
阅读全文