使用arm_sve.h实现sve实现SPMV,给出案例
时间: 2024-04-30 11:23:05 浏览: 260
以下是使用arm_sve.h实现sve实现SPMV的示例代码:
```
#include <arm_sve.h>
void spmv(const int n, const int nnz, const float *val, const int *col_idx, const int *row_ptr, const float *x, float *y) {
// Set vector length and data type
const int vl = svcntw();
typedef float32_t svfloat_t;
// Loop over matrix rows
for (int i = 0; i < n; i++) {
// Initialize result to zero
float32_t acc = 0.0f;
// Loop over non-zero values in row
for (int j = row_ptr[i]; j < row_ptr[i + 1]; j += vl) {
// Load values into SVE vector
svfloat_t v_val = svld1_vnum(svfloat_t, val, j, vl);
svint32_t v_col_idx = svld1_vnum(svint32_t, col_idx, j, vl);
// Load x values into SVE vector
svfloat_t v_x = svld1_vnum(svfloat_t, x, vget(v_col_idx, 0), vl);
// Multiply values and x values
svfloat_t v_prod = svmul_f32_x(vl, v_val, v_x);
// Add products to accumulator
acc += svaddv_x(vl, v_prod);
}
// Store result
y[i] = acc;
}
}
```
该函数接受稀疏矩阵的值、列索引、行指针以及向量x和y的指针,并使用SVE指令计算出SPMV的结果,并将结果存储在向量y中。
该函数首先设置了向量长度和数据类型,并循环遍历矩阵的每一行。在每一行中,它首先将结果初始化为零,然后循环遍历该行中的非零值。对于每个非零值,它使用SVE指令加载该值、列索引和向量x的值,并将它们相乘。然后将乘积添加到累加器中。最后,将结果存储在向量y中。
该函数使用了许多SVE指令,如svld1_vnum(加载向量),svmul_f32_x(向量乘法)和svaddv_x(向量加法)。这些指令利用了SVE的向量长度和数据类型,以实现高效的SPMV计算。
阅读全文
相关推荐


















