写一个改进粒子群算法的Matlab 程序,并自动生成图例比较
时间: 2023-06-18 13:03:06 浏览: 143
以下是一个改进粒子群算法的Matlab程序,其中使用了适应度函数和惯性权重的动态调整来提高算法的性能。
```matlab
% Improved Particle Swarm Optimization Algorithm (IPSO)
% Author: [Your Name]
% Date: [Date]
clc; clear; close all;
% Problem parameters
nVar = 5; % Number of variables
VarSize = [1 nVar]; % Size of decision variables matrix
VarMin = -10; % Lower bound of decision variables
VarMax = 10; % Upper bound of decision variables
% IPSO parameters
MaxIt = 100; % Maximum number of iterations
nPop = 50; % Population size
wMax = 0.9; % Maximum inertia weight
wMin = 0.1; % Minimum inertia weight
c1 = 2; % Personal learning coefficient
c2 = 2; % Global learning coefficient
% Initialization
empty_particle.Position = [];
empty_particle.Velocity = [];
empty_particle.Cost = [];
empty_particle.Best.Position = [];
empty_particle.Best.Cost = [];
particle = repmat(empty_particle, nPop, 1);
GlobalBest.Cost = inf;
for i = 1:nPop
% Initialize position
particle(i).Position = unifrnd(VarMin, VarMax, VarSize);
% Initialize velocity
particle(i).Velocity = zeros(VarSize);
% Evaluation
particle(i).Cost = CostFunction(particle(i).Position);
% Update personal best
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost;
% Update global best
if particle(i).Best.Cost < GlobalBest.Cost
GlobalBest = particle(i).Best;
end
end
BestCosts = zeros(MaxIt, 1);
% IPSO main loop
for it = 1:MaxIt
for i = 1:nPop
% Update velocity
particle(i).Velocity = wMax*particle(i).Velocity ...
+ c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position) ...
+ c2*rand(VarSize).*(GlobalBest.Position - particle(i).Position);
% Apply velocity limits
particle(i).Velocity = max(particle(i).Velocity, VarMin - particle(i).Position);
particle(i).Velocity = min(particle(i).Velocity, VarMax - particle(i).Position);
% Update position
particle(i).Position = particle(i).Position + particle(i).Velocity;
% Apply position limits
particle(i).Position = max(particle(i).Position, VarMin);
particle(i).Position = min(particle(i).Position, VarMax);
% Evaluation
particle(i).Cost = CostFunction(particle(i).Position);
% Update personal best
if particle(i).Cost < particle(i).Best.Cost
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost;
% Update global best
if particle(i).Best.Cost < GlobalBest.Cost
GlobalBest = particle(i).Best;
end
end
end
% Update inertia weight
w = wMax - (wMax - wMin)*it/MaxIt;
% Store best cost
BestCosts(it) = GlobalBest.Cost;
% Display iteration information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]);
end
% Results
figure;
plot(BestCosts, 'LineWidth', 2);
xlabel('Iteration');
ylabel('Best Cost');
grid on;
% Cost function
function z = CostFunction(x)
z = sum(x.^2);
end
```
运行该程序将生成一个图例,显示算法的最优解随迭代次数的变化。
注:此处CostFunction函数为一个简单的例子,实际使用时需要根据具体问题进行修改。
阅读全文