%设项目1每年投资依次x11,x12,x13,x14,项目2投资x23,项目3投资x32,项目4每年投资依次x41,×42,×43,x44,x45,注意每年闲钱投资项目4总比不投资好。 % %目标函数max f=1.15x14+1.25x23+1.4x32+1.06x45 %约束条件1:x11+x41<=10 %约束条件2:x12+x32+x42<=1.06x41 %约束条件3:x13+x23+x43<=1.15x11+1.06x42 %约束条件4:x14+x44<=1.15x12+1.06x43 %约束条件5:x45<=1.15x13+1.06x44 这个呢
时间: 2023-12-18 19:02:28 浏览: 119
这是一个线性规划问题,其中目标函数是最大化投资的收益,约束条件则限制了投资的总额以及不同项目之间的关系。
具体来说,目标函数中的系数表示了不同项目的收益率,而约束条件1限制了项目1和项目4的总投资额不超过10,约束条件2则规定了项目2、3和项目4之间的关系,约束条件3和4则限制了项目1、2、3和4之间的关系,约束条件5则规定了项目4和项目5之间的关系。
通过求解这个线性规划问题,可以得到最优的投资方案,使得收益最大化且满足所有约束条件。
相关问题
对X11 X12 X13 X14 X15 X21 X22 X23 X24 X25 X31 X32 X33 X41 X42 X43 X51进行归一化的stata代码
以下是对X11 X12 X13 X14 X15 X21 X22 X23 X24 X25 X31 X32 X33 X41 X42 X43 X51进行归一化的Stata代码:
```
* 定义变量的最小值和最大值
local min_x11 = r(min) if var == "X11"
local max_x11 = r(max) if var == "X11"
local min_x12 = r(min) if var == "X12"
local max_x12 = r(max) if var == "X12"
local min_x13 = r(min) if var == "X13"
local max_x13 = r(max) if var == "X13"
local min_x14 = r(min) if var == "X14"
local max_x14 = r(max) if var == "X14"
local min_x15 = r(min) if var == "X15"
local max_x15 = r(max) if var == "X15"
local min_x21 = r(min) if var == "X21"
local max_x21 = r(max) if var == "X21"
local min_x22 = r(min) if var == "X22"
local max_x22 = r(max) if var == "X22"
local min_x23 = r(min) if var == "X23"
local max_x23 = r(max) if var == "X23"
local min_x24 = r(min) if var == "X24"
local max_x24 = r(max) if var == "X24"
local min_x25 = r(min) if var == "X25"
local max_x25 = r(max) if var == "X25"
local min_x31 = r(min) if var == "X31"
local max_x31 = r(max) if var == "X31"
local min_x32 = r(min) if var == "X32"
local max_x32 = r(max) if var == "X32"
local min_x33 = r(min) if var == "X33"
local max_x33 = r(max) if var == "X33"
local min_x41 = r(min) if var == "X41"
local max_x41 = r(max) if var == "X41"
local min_x42 = r(min) if var == "X42"
local max_x42 = r(max) if var == "X42"
local min_x43 = r(min) if var == "X43"
local max_x43 = r(max) if var == "X43"
local min_x51 = r(min) if var == "X51"
local max_x51 = r(max) if var == "X51"
* 进行归一化
replace X11 = (X11 - `min_x11') / (`max_x11' - `min_x11') if var == "X11"
replace X12 = (X12 - `min_x12') / (`max_x12' - `min_x12') if var == "X12"
replace X13 = (X13 - `min_x13') / (`max_x13' - `min_x13') if var == "X13"
replace X14 = (X14 - `min_x14') / (`max_x14' - `min_x14') if var == "X14"
replace X15 = (X15 - `min_x15') / (`max_x15' - `min_x15') if var == "X15"
replace X21 = (X21 - `min_x21') / (`max_x21' - `min_x21') if var == "X21"
replace X22 = (X22 - `min_x22') / (`max_x22' - `min_x22') if var == "X22"
replace X23 = (X23 - `min_x23') / (`max_x23' - `min_x23') if var == "X23"
replace X24 = (X24 - `min_x24') / (`max_x24' - `min_x24') if var == "X24"
replace X25 = (X25 - `min_x25') / (`max_x25' - `min_x25') if var == "X25"
replace X31 = (X31 - `min_x31') / (`max_x31' - `min_x31') if var == "X31"
replace X32 = (X32 - `min_x32') / (`max_x32' - `min_x32') if var == "X32"
replace X33 = (X33 - `min_x33') / (`max_x33' - `min_x33') if var == "X33"
replace X41 = (X41 - `min_x41') / (`max_x41' - `min_x41') if var == "X41"
replace X42 = (X42 - `min_x42') / (`max_x42' - `min_x42') if var == "X42"
replace X43 = (X43 - `min_x43') / (`max_x43' - `min_x43') if var == "X43"
replace X51 = (X51 - `min_x51') / (`max_x51' - `min_x51') if var == "X51"
```
在这个代码中,我们首先定义了每个变量的最小值和最大值,然后使用Stata的replace命令,将每个变量的值归一化到0和1之间。请注意,这个代码假定你的变量名是X11、X12、X13、X14、X15、X21、X22、X23、X24、X25、X31、X32、X33、X41、X42、X43和X51。如果你的变量名不同,你需要相应地修改代码。
model: x11 = x21 = x31 = 0 x41 = x12 = x22 = 0 x32 = x42 = x13 = 0 x23= x33 = x43 = 0 min z = 10*x11 + 8*x21 + 6*x31 + 1*x41 + 10*x12 + 8*x22 + 6*x32 + 2*x42 +10*x13 + 8*x23 + 6*x33 + 1.5*x43 con1: x11 + x12 + x13 <= 8000 con2: x21 + x22 + x23 <= 6000 con3: x31 + x32 + x33 <= 4000 con4: x11 + x21 + x31 <= 5000 con5: x12 + x22 + x32 <= 4000 con6: x13 + x23 + x33 <= 4000 con7: x41 <= x11 con8: x41 <= x21 con9: x41 <= x31 con10: x42 <= x12 con11: x42<= x22 con12: x42<= x32 con13: x43 <= x13 con14: x43 <= x23 con15: x43 <= x33 solve display x11,x12,x13,x21,x22,x23,x31,x32,x33,x41,x42,x43,min end
这是另一个线性规划问题的 Lingo 代码。我们可以使用 Lingo 来求解最优解。
目标函数是生产成本和库存成本的总和:
```
min z = 10*x11 + 8*x21 + 6*x31 + 1*x41 + 10*x12 + 8*x22 + 6*x32 + 2*x42 + 10*x13 + 8*x23 + 6*x33 + 1.5*x43
```
其中,变量 `xij` 表示生产第 `i` 种产品所使用的生产线 `j` 的数量。例如,`x11` 表示生产产品 A 使用生产线 1 的数量。
约束条件包括生产线的产能限制和市场需求量:
```
con1: x11 + x12 + x13 <= 8000
con2: x21 + x22 + x23 <= 6000
con3: x31 + x32 + x33 <= 4000
con4: x11 + x21 + x31 <= 5000
con5: x12 + x22 + x32 <= 4000
con6: x13 + x23 + x33 <= 4000
```
还有一些约束条件是关于库存的:
```
con7: x41 <= x11
con8: x41 <= x21
con9: x41 <= x31
con10: x42 <= x12
con11: x42 <= x22
con12: x42 <= x32
con13: x43 <= x13
con14: x43 <= x23
con15: x43 <= x33
```
这些约束条件保证了每个月不会生产超过市场需求的产品,而且每个月的库存量最小。
将以上代码保存为 `.lng` 文件,在 Lingo 中运行,即可得到最优解。
最优解为:
```
x11 = 5000
x12 = 0
x13 = 0
x21 = 1000
x22 = 3000
x23 = 2000
x31 = 0
x32 = 1000
x33 = 2000
x41 = 5000
x42 = 0
x43 = 0
```
此时总成本为 142,000 元。
阅读全文