w = nx.utils.discrete_sequence(2, p=0.5)[0]

时间: 2024-03-30 18:40:30 浏览: 18
这是一个 NetworkX 库中的函数,它的作用是生成一个长度为2的离散序列,每个元素都是 0 或 1,且每个元素的概率为 p 和 (1-p)。其中,p 是一个指定的概率值,取值范围为 [0,1]。该函数的返回值是一个包含一个元素的列表,这个元素就是生成的离散序列。在这个例子中,使用 `nx.utils.discrete_sequence(2, p=0.5)` 生成一个长度为 2 的离散序列,每个元素都有 50% 的概率是 0 或 1,然后通过 `[0]` 取出这个列表中的第一个元素,将其赋值给变量 w。因此,变量 w 的值为 0 或 1,且每个值的概率均为 0.5。
相关问题

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法: 1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。 2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。 3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。 以下是代码的修改建议: 1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。 2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。 3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。 4. 增加正则化:可以使用 L2 正则化来防止过拟合。 修改后的代码如下: ``` import torch.nn.functional as F import torchvision.transforms as transforms class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5, 1024) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(1024, 141) # 数据增强 self.transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def forward(self, x): x = self.conv1_1(x) x = self.bn1_1(x) x = self.relu1_1(x) x = self.pool1(x) x = self.conv2_1(x) x = self.bn2_1(x) x = self.relu2_1(x) x = self.pool2(x) x = self.conv3_1(x) x = self.bn3_1(x) x = self.relu3_1(x) x = self.pool3(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu4_1(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu4_2(x) x = self.pool4(x) x = self.conv5_1(x) x = self.bn5_1(x) x = self.relu5_1(x) x = self.conv5_2(x) x = self.bn5_2(x) x = self.relu5_2(x) x = self.pool5(x) x = x.view(-1, 512*5*5) x = self.dropout1(x) x = self.fc1(x) x = self.relu6(x) x = self.dropout2(x) x = self.fc2(x) return x ``` 在训练时,可以使用如下代码来进行数据增强: ``` trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=model.transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) ```

y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes)

这段代码是将训练集和测试集的标签进行one-hot编码。在机器学习中,有些算法需要将标签转换成数值型的向量,而one-hot编码是一种将离散型数据转换成向量的常用方法。例如,假设有三个类别 A、B 和 C,那么one-hot编码会将 A 编码成 (1, 0, 0),B 编码成 (0, 1, 0),C 编码成 (0, 0, 1)。这样做的好处是可以让算法更好地理解样本之间的关系,从而提高模型的性能。在这段代码中,num_classes 表示类别的数量,而 y_train 和 y_test 是训练集和测试集的标签。通过 keras.utils.to_categorical() 函数将标签进行one-hot编码,最终得到的是一个二维的数组,其中每一行表示一个样本的标签向量。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

浅谈keras中的keras.utils.to_categorical用法

主要介绍了浅谈keras中的keras.utils.to_categorical用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Mysql 教程(Markd格式 经典全面 看这一个资料就够了)

Mysql 教程(Markd格式 经典全面 看这一个资料就够了)涵盖了mysql工作流、事务、锁、索引、性能优化、运维和配置等各个方面。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB数据可视化黑科技:洞悉数据背后的秘密

![MATLAB数据可视化黑科技:洞悉数据背后的秘密](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB数据可视化的基本原理 MATLAB数据可视化是一种将数据转化为图形表示形式的技术,以帮助人们理解和分析数据。其基本原理包括: - **数据表示:**将原始数据转换为图形元素,如点、线和条形。 - **图形布局:**确定图形元素在绘图区域中的位置和大小。 - **图形美化:**添加标题、标签、颜色和纹理等元素,以增强图形的可读性和美观性。 - **交互性:**允
recommend-type

优化算法计算单位面积年平均输出热功率的代码

计算单位面积年平均输出热功率的代码具体情况取决于你所要解决的问题和需要的数据。然而,我可以给你一个通用的优化算法的框架,你可以根据具体情况进行调整。 首先,你需要明确计算单位面积年平均输出热功率的数学公式或算法。假设你已经有了计算热功率的函数 `calculate_power`,它接受一些输入参数,并返回热功率值。 下面是一个示例的优化算法框架,以最大化单位面积年平均输出热功率为目标: ```python import random def objective_function(params): # 这个函数用于计算目标函数的值 # 根据具体情况,你需要将 params