def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale", mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask", flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) #image_datagen中flow函数接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据。flow_from_directory函数以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据 image_generator = image_datagen.flow_from_directory( train_path, classes = [image_folder], class_mode = None, color_mode = image_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = image_save_prefix, seed = seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes = [mask_folder], class_mode = None, color_mode = mask_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = mask_save_prefix, seed = seed) train_generator = zip(image_generator, mask_generator) for (img,mask) in train_generator: img,mask = adjustData(img,mask,flag_multi_class,num_class) yield (img,mask)把这段代码中读取训练集img改成读取文件中的四张灰度图并合并为四通道图作为训练集
时间: 2024-03-14 13:44:34 浏览: 182
好的,我可以帮您修改这段代码来读取文件中的四张灰度图并将它们合并为一个四通道图像作为训练集。请参考下面的代码:
``` python
import cv2
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
def trainGenerator(batch_size, train_path, img_folder, mask_folder, aug_dict, img_color_mode="rgba",
mask_color_mode="grayscale", img_save_prefix="image", mask_save_prefix="mask",
flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
# 读取四个灰度图像并将它们合并为一个四通道图像
img1 = cv2.imread('img1.png', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('img2.png', cv2.IMREAD_GRAYSCALE)
img3 = cv2.imread('img3.png', cv2.IMREAD_GRAYSCALE)
img4 = cv2.imread('img4.png', cv2.IMREAD_GRAYSCALE)
img = cv2.merge((img1, img2, img3, img4))
# 将图像转换为四通道 rgba 格式
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGBA)
# 构造 image_datagen 和 mask_datagen
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
# 使用 image_datagen 和 mask_datagen 生成数据
image_generator = image_datagen.flow(np.array([img]), batch_size=batch_size, save_to_dir=save_to_dir,
save_prefix=img_save_prefix, seed=seed)
mask_generator = mask_datagen.flow_from_directory(train_path, classes=[mask_folder], class_mode=None,
color_mode=mask_color_mode, target_size=target_size,
batch_size=batch_size, save_to_dir=save_to_dir,
save_prefix=mask_save_prefix, seed=seed)
# 将 image_generator 和 mask_generator 合并为一个 train_generator
train_generator = zip(image_generator, mask_generator)
# 循环遍历 train_generator 并返回调整后的数据
for (img, mask) in train_generator:
img, mask = adjustData(img, mask, flag_multi_class, num_class)
yield (img, mask)
```
在上面的代码中,我们首先读取四个灰度图像并将它们合并为一个四通道图像。然后,我们将四通道图像转换为 RGBA 格式,以便与掩膜图像一起使用。接下来,我们使用 `ImageDataGenerator` 类构造了 `image_datagen` 和 `mask_datagen`,并使用它们分别生成四通道图像和掩膜图像的数据。最后,我们将 `image_generator` 和 `mask_generator` 合并为一个 `train_generator` 并循环遍历它,返回调整后的数据。
阅读全文