R语言实现建立基于AdaBoost的乳腺癌预测模型
时间: 2024-01-25 07:16:42 浏览: 101
以下是使用R语言实现建立基于AdaBoost的乳腺癌预测模型的步骤:
1. 首先,导入必要的R包。这里我们需要用到Adabag包。
```R
library(adabag)
```
2. 接下来,我们需要准备数据集。这里我们使用UCI Machine Learning Repository提供的乳腺癌数据集(Breast Cancer Wisconsin (Diagnostic) Data Set),该数据集包含了乳腺肿瘤细胞的各种特征,以及对应的诊断结果(M:恶性,B:良性)。我们可以通过以下代码导入数据集:
```R
data <- read.csv("breast-cancer-wisconsin.csv")
```
3. 数据预处理。我们需要将诊断结果转换为二元变量,其中M对应1,B对应0,并将所有缺失值替换为0。
```R
data$diagnosis <- ifelse(data$diagnosis == "M", 1, 0)
data[is.na(data)] <- 0
```
4. 将数据集分为训练集和测试集。
```R
set.seed(123)
trainIndex <- sample(1:nrow(data), 0.7*nrow(data))
train <- data[trainIndex, ]
test <- data[-trainIndex, ]
```
5. 建立基于AdaBoost的乳腺癌预测模型。我们在Adabag包中使用boosting函数。在这里,我们选择使用C5.0分类树作为基分类器。
```R
model <- boosting(diagnosis ~ ., data = train, boos = TRUE, mfinal = 5, coeflearn = 0.1,
control = ctree_control(mincut = 2, maxdepth = 2))
```
其中,diagnosis ~ . 表示我们使用所有其他变量来预测诊断结果。boos = TRUE 表示使用AdaBoost算法。mfinal = 5 表示使用5个基分类器。coeflearn = 0.1 表示基分类器的权重缩减系数。control = ctree_control(mincut = 2, maxdepth = 2) 表示基分类器使用C5.0算法,限制最小叶子节点数为2,最大深度为2。
6. 对测试集进行预测,并计算准确率。
```R
predictions <- predict(model, newdata = test)
accuracy <- sum(predictions$class == test$diagnosis)/nrow(test)
```
最后得到的accuracy即为模型在测试集上的准确率。
以上就是使用R语言实现建立基于AdaBoost的乳腺癌预测模型的步骤。
阅读全文
相关推荐

















