stm32f4 增量式pid
时间: 2023-09-17 21:08:25 浏览: 76
STM32F4 增量式 PID 是一种基于 STM32F4 微控制器的 PID 控制算法,其中增量式 PID 是一种相对传统的 PID 控制算法的改进。在增量式 PID 控制算法中,控制器输出的值不是绝对的控制量,而是增量。
具体来说,增量式 PID 控制算法通过比较当前的误差与前一次的误差,计算增量值,并将其加入到前一次的控制量中,得到当前的控制量。这种控制方式可以减少控制量的抖动,提高控制精度。
在 STM32F4 上实现增量式 PID 控制算法,需要使用 STM32F4 的定时器、输入捕获和 PWM 输出等功能。通过编程实现增量式 PID 控制算法,可以实现对各种控制系统的精确控制。
相关问题
stm32f4增量式pid程序
下面是一个基于STM32F4的增量式PID程序示例:
```c
#include "stm32f4xx.h"
float kp = 1.0f; // 比例系数
float ki = 0.1f; // 积分系数
float kd = 0.01f; // 微分系数
float setpoint = 50.0f; // 设定值
float feedback = 0.0f; // 反馈值
float error = 0.0f; // 误差值
float last_error = 0.0f; // 上次误差值
float integral = 0.0f; // 积分值
float derivative = 0.0f; // 微分值
float output = 0.0f; // 输出值
void TIM2_IRQHandler(void)
{
if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
// 计算误差值
error = setpoint - feedback;
// 计算积分值
integral += error;
// 计算微分值
derivative = error - last_error;
// 计算输出值
output = kp * error + ki * integral + kd * derivative;
// 保存上次误差值
last_error = error;
// 输出到PWM通道
TIM_SetCompare1(TIM3, (uint16_t)(output));
// 清除中断标志位
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
}
}
int main(void)
{
// 初始化PWM输出
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM3);
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 8399;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_Cmd(TIM3, ENABLE);
// 初始化PID控制器
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 8399;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_Cmd(TIM2, ENABLE);
// 进入主循环
while(1)
{
// 读取反馈值,这里假设反馈值为ADC转换结果
feedback = (float)ADC_GetConversionValue(ADC1);
}
}
```
在这个例子中,我们使用TIM2作为控制器的计时器,TIM3作为PWM输出。在TIM2的中断处理函数中,我们计算误差值、积分值和微分值,并根据比例系数、积分系数和微分系数计算输出值。最后,我们将输出值写入到PWM通道,控制电机的转速。
注意,这个程序仅仅是一个示例,实际应用中需要根据具体的系统特点和控制需求进行调整。
用stm32f4写一个增量式pid程序
好的,我来给您讲解一下,步骤如下:
1. 定义PID结构体,包括反馈量、设定值、误差、比例系数、积分系数、微分系数、输出值、上一次误差、积分值等变量。
2. 初始化PID结构体,包括设定值、比例系数、积分系数、微分系数、输出值等变量。
3. 在主循环中不断读取反馈量,计算误差,并更新PID结构体中的误差、积分值、微分值等变量。
4. 根据PID算法计算输出值,并将输出值发送给执行器。
5. 循环执行以上步骤,直到达到设定的控制目标。
下面是增量式PID程序的代码示例:
```c
#include "stm32f4xx.h"
typedef struct
{
float target; // 设定值
float feedback; // 反馈量
float error; // 误差
float kp; // 比例系数
float ki; // 积分系数
float kd; // 微分系数
float output; // 输出值
float lastError;// 上一次误差
float integral; // 积分值
float derivative;//微分值
} PID_TypeDef;
void PID_Init(PID_TypeDef *pid, float target, float kp, float ki, float kd)
{
pid->target = target;
pid->kp = kp;
pid->ki = ki;
pid->kd = kd;
pid->error = 0;
pid->lastError = 0;
pid->integral = 0;
pid->derivative = 0;
pid->output = 0;
}
float PID_Calculate(PID_TypeDef *pid, float feedback)
{
pid->feedback = feedback;
pid->error = pid->target - pid->feedback;
pid->integral += pid->error;
pid->derivative = pid->error - pid->lastError;
pid->output = pid->kp * pid->error + pid->ki * pid->integral + pid->kd * pid->derivative;
pid->lastError = pid->error;
return pid->output;
}
int main()
{
// 初始化PID结构体
PID_TypeDef pid;
PID_Init(&pid, 50, 0.5, 0.01, 0.1);
// 循环读取反馈量,并计算输出值
while (1)
{
float feedback = /* 读取反馈量 */;
float output = PID_Calculate(&pid, feedback);
/* 发送输出值给执行器 */
}
}
```
以上代码仅供参考,具体实现还需要根据具体的需求进行调整。
阅读全文