UNET网络双解码器模型代码和注释
时间: 2023-06-18 09:08:08 浏览: 201
以下是一个简单的UNET网络双解码器模型的代码和注释。这个模型使用了PyTorch框架。
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleDecoderUNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleDecoderUNet, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
# 编码器
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.bn2 = nn.BatchNorm2d(128)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.bn3 = nn.BatchNorm2d(256)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True)
self.bn4 = nn.BatchNorm2d(512)
self.relu4 = nn.ReLU(inplace=True)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1, bias=True)
self.bn5 = nn.BatchNorm2d(1024)
self.relu5 = nn.ReLU(inplace=True)
# 解码器1
self.upconv6 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2, padding=0, bias=True)
self.conv6 = nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1, bias=True)
self.bn6 = nn.BatchNorm2d(512)
self.relu6 = nn.ReLU(inplace=True)
self.upconv7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2, padding=0, bias=True)
self.conv7 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.bn7 = nn.BatchNorm2d(256)
self.relu7 = nn.ReLU(inplace=True)
self.upconv8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2, padding=0, bias=True)
self.conv8 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.bn8 = nn.BatchNorm2d(128)
self.relu8 = nn.ReLU(inplace=True)
self.upconv9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2, padding=0, bias=True)
self.conv9 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.bn9 = nn.BatchNorm2d(64)
self.relu9 = nn.ReLU(inplace=True)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
# 解码器2
self.upconv11 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2, padding=0, bias=True)
self.conv11 = nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1, bias=True)
self.bn11 = nn.BatchNorm2d(512)
self.relu11 = nn.ReLU(inplace=True)
self.upconv12 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2, padding=0, bias=True)
self.conv12 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.bn12 = nn.BatchNorm2d(256)
self.relu12 = nn.ReLU(inplace=True)
self.upconv13 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2, padding=0, bias=True)
self.conv13 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.bn13 = nn.BatchNorm2d(128)
self.relu13 = nn.ReLU(inplace=True)
self.upconv14 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2, padding=0, bias=True)
self.conv14 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.bn14 = nn.BatchNorm2d(64)
self.relu14 = nn.ReLU(inplace=True)
self.conv15 = nn.Conv2d(64, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x):
# 编码器
x1 = self.relu1(self.bn1(self.conv1(x)))
x2 = self.relu2(self.bn2(self.conv2(x1)))
x3 = self.relu3(self.bn3(self.conv3(x2)))
x4 = self.relu4(self.bn4(self.conv4(x3)))
x5 = self.relu5(self.bn5(self.conv5(x4)))
# 解码器1
y6 = torch.cat([self.upconv6(x5), x4], 1)
y6 = self.relu6(self.bn6(self.conv6(y6)))
y7 = torch.cat([self.upconv7(y6), x3], 1)
y7 = self.relu7(self.bn7(self.conv7(y7)))
y8 = torch.cat([self.upconv8(y7), x2], 1)
y8 = self.relu8(self.bn8(self.conv8(y8)))
y9 = torch.cat([self.upconv9(y8), x1], 1)
y9 = self.relu9(self.bn9(self.conv9(y9)))
y10 = self.conv10(y9)
# 解码器2
z11 = torch.cat([self.upconv11(x5), x4], 1)
z11 = self.relu11(self.bn11(self.conv11(z11)))
z12 = torch.cat([self.upconv12(z11), x3], 1)
z12 = self.relu12(self.bn12(self.conv12(z12)))
z13 = torch.cat([self.upconv13(z12), x2], 1)
z13 = self.relu13(self.bn13(self.conv13(z13)))
z14 = torch.cat([self.upconv14(z13), x1], 1)
z14 = self.relu14(self.bn14(self.conv14(z14)))
z15 = self.conv15(z14)
# 返回两个输出
return y10, z15
```
在上面的代码中,我们定义了一个名为`DoubleDecoderUNet`的类,它继承自`nn.Module`。该类包含了UNET网络的编码器和两个解码器。
在`__init__`函数中,我们定义了UNET网络的各个层。编码器部分包括5个卷积层,每个卷积层后面都有一个BatchNorm层和ReLU激活函数。第一个卷积层的输入通道数等于原始图像的通道数。第五个卷积层的输出通道数为1024。解码器部分包括4个反卷积层和4个卷积层。解码器1的输出是一个大小与原始输入相同的特征图,并且输出通道数等于需要预测的类别数。解码器2的输出与解码器1相同。
在`forward`函数中,我们定义了UNET网络的前向传播过程。输入数据首先通过编码器,得到5个特征图。解码器1从第5个特征图开始反卷积,并与编码器的第4、3、2、1个特征图进行合并和卷积。解码器1的输出是一个预测图。类似地,解码器2从第5个特征图开始反卷积,并与编码器的第4、3、2、1个特征图进行合并和卷积。解码器2的输出也是一个预测图。
最后,该模型返回两个输出,分别是解码器1和解码器2的输出。
阅读全文