使用era5数据做行星边界层高度图python代码
时间: 2024-05-16 16:18:04 浏览: 203
以下是使用ERA5数据生成行星边界层高度图的 Python 代码:
```python
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
# Load ERA5 data using xarray
data = xr.open_dataset('/path/to/era5/data.nc')
# Extract variables
u = data.u10 # 10m zonal wind component
v = data.v10 # 10m meridional wind component
t = data.t2m # 2m temperature
sp = data.sp # Surface pressure
z = data.z # Geopotential
# Calculate potential temperature
theta = t * (1000 / sp) ** 0.286
# Calculate geostrophic wind
f = 2 * 7.2921e-5 * np.sin(np.deg2rad(data.latitude))
ug = -1 / f * v.differentiate('longitude') # zonal geostrophic wind
vg = 1 / f * u.differentiate('longitude') # meridional geostrophic wind
# Calculate ageostrophic wind
ua = u - ug # zonal ageostrophic wind
va = v - vg # meridional ageostrophic wind
# Calculate absolute vorticity
avort = (vg.differentiate('longitude') - ug.differentiate('latitude')) + f
# Calculate vertical vorticity
vort = avort - f
# Calculate boundary layer height using Ekman layer theory
Cd = 1e-3 # Drag coefficient
rho = 1.225 # Air density
h = (Cd * rho * 2 * np.pi / (24 * 3600)) ** (1 / 3) * (ug ** 2 + vg ** 2) ** (1 / 6)
# Convert geopotential height to meters
z_m = z / 9.81
# Calculate planetary boundary layer height
pblh = xr.DataArray(np.zeros_like(t), dims=t.dims, coords=t.coords)
lev = z_m.level.values
for i in range(len(t.latitude)):
for j in range(len(t.longitude)):
# Find the lowest level where vorticity exceeds a threshold
for k in range(len(lev)):
if vort[i, k, j] > 0.05:
pblh[i, j] = lev[k]
break
# Plot PBL height as a contour map
lon, lat = np.meshgrid(pblh.longitude.values, pblh.latitude.values)
plt.contourf(lon, lat, pblh.T, cmap='jet')
plt.colorbar(label='PBL height (m)')
plt.title('Planetary Boundary Layer Height')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.show()
```
注意,此代码仅提供一个示例,具体实现可能需要根据你的数据格式和需求做出一些修改。
阅读全文