self.layers = [] self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W4'], self.params['b4'], conv_param_4['stride'], conv_param_4['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Convolution(self.params['W5'], self.params['b5'], conv_param_5['stride'], conv_param_5['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W6'], self.params['b6'], conv_param_6['stride'], conv_param_6['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Affine(self.params['W7'], self.params['b7'])) self.layers.append(Relu()) self.layers.append(Dropout(0.5)) self.layers.append(Affine(self.params['W8'], self.params['b8'])) self.layers.append(Dropout(0.5)) self.last_layer = SoftmaxWithLoss()
时间: 2024-03-22 18:40:54 浏览: 68
cwj_deck.gl框架的详细介绍_cooluni_
这段代码是在构建卷积神经网络模型时定义模型的层。其中 self.layers 是一个列表,用于存储模型的各个层,包括卷积层、池化层、全连接层、激活函数层和 Dropout 层。具体来说,这段代码中,先将第一个卷积层、激活函数层、第二个卷积层、激活函数层、池化层、第三个卷积层、激活函数层、第四个卷积层、激活函数层、池化层、全连接层、激活函数层、Dropout 层、全连接层、Dropout 层依次添加到 self.layers 列表中。其中,每一个卷积层后面都跟着一个激活函数层 ReLU(),每一个池化层都是使用了最大池化操作,每一个全连接层后面都跟着一个激活函数层 ReLU() 和一个 Dropout 层,最后一层是输出层,使用了 SoftmaxWithLoss() 层进行分类。通过将这些层依次添加到 self.layers 中,就构建了一个完整的卷积神经网络模型。
阅读全文