VHN5019A-E 的引脚使用
时间: 2024-01-08 19:03:47 浏览: 48
VHN5019A-E是一款高电流、高电压H桥驱动芯片。它的引脚使用如下:
1. OUT1:电机输出端1,需要连接电机。
2. OUT2:电机输出端2,需要连接电机。
3. GND:芯片电源负极和信号地,需要连接到系统地。
4. VCC:芯片电源正极,需要连接到12V-24V直流电源。
5. IN1:PWM输入1引脚,用于控制电机的转速和方向。
6. IN2:PWM输入2引脚,用于控制电机的转速和方向。
7. EN1:使能引脚1,控制电机的开关。
8. EN2:使能引脚2,控制电机的开关。
9. CS:过流保护引脚,当芯片输出电流超过设定值时,会输出低电平信号。
10. CS_DIS:禁用过流保护引脚,将其接地可以禁用过流保护功能。
需要注意的是,IN1和IN2引脚需要外接PWM信号,EN1和EN2引脚需要外接控制信号,而OUT1和OUT2引脚需要连接电机。同时,电源的电压和电流也需要满足芯片的要求,以确保芯片和电机的正常工作。CS和CS_DIS引脚用于过流保护功能,可根据需要选择是否使用。
相关问题
<div id="video"><video src="/content/photos//1/CdHq3BMxhfPxdQcB5WA454xGAfWm5VhN.mp4" preload="true" controls="controls"></video></div> 怎么让 video 自适应填满DIV
要让 `<video>` 元素自适应填满其父级 `<div>`,您可以使用 CSS 来控制元素的宽度和高度。以下是一种方法可以实现该效果:
```html
<style>
#video {
position: relative;
width: 100%;
height: 0;
padding-bottom: 56.25%; /* 16:9 宽高比例 */
}
#video video {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
<div id="video">
<video src="/content/photos//1/CdHq3BMxhfPxdQcB5WA454xGAfWm5VhN.mp4" preload="true" controls="controls"></video>
</div>
```
在上述代码中,我们使用了相对定位和绝对定位来实现 `<video>` 元素的自适应布局。父级 `<div>` 的宽度设置为100%,高度设置为0,并使用 `padding-bottom` 属性来设置宽高比例(这里使用的是16:9)。然后,我们将 `<video>` 元素的位置设为绝对定位,并设置其宽度和高度为100%。
这样做可以使 `<video>` 元素根据父级 `<div>` 的宽度自动调整大小,从而填满整个区域。
希望以上解决方案对您有帮助。如果有任何问题,请随时提问。
get Pre-whitening signal by python
Pre-whitening is a technique used in signal processing to remove the spectral correlation of a signal, thus making it easier to analyze or model. Here is an example of how to pre-whiten a signal using Python and the NumPy library.
First, let's import the necessary libraries:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import lfilter, butter
```
Next, let's generate a simple signal consisting of two sinusoids with different frequencies and amplitudes:
```python
fs = 1000 # Sampling rate in Hz
t = np.arange(0, 1, 1/fs) # Time vector from 0 to 1 second
n = len(t) # Number of samples
f1 = 50 # First sinusoid frequency in Hz
f2 = 200 # Second sinusoid frequency in Hz
A1 = 1 # First sinusoid amplitude
A2 = 0.5 # Second sinusoid amplitude
x = A1*np.sin(2*np.pi*f1*t) + A2*np.sin(2*np.pi*f2*t) # Signal
```
We can plot the signal to visualize it:
```python
plt.plot(t, x)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.show()
```
![Signal plot](https://i.imgur.com/lNPF9fn.png)
Now we can pre-whiten the signal using a first-order Butterworth high-pass filter with a cutoff frequency of 10 Hz. This will remove the low-frequency components of the signal and leave us with a white noise signal:
```python
f_cutoff = 10 # Cutoff frequency in Hz
b, a = butter(1, f_cutoff/(fs/2), btype='highpass') # High-pass filter coefficients
x_filt = lfilter(b, a, x) # Apply filter to signal
```
We can plot the filtered signal to visualize it:
```python
plt.plot(t, x_filt)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.show()
```
![Filtered signal plot](https://i.imgur.com/vhn6UFW.png)
As you can see, the pre-whitened signal has a flat spectral density, which means that its power is uniformly distributed across all frequencies. This makes it easier to analyze or model the signal without being biased by its spectral correlation.
阅读全文