给出输入是图像张量与超像素标签张量的超像素池化代码,并返回池化后的张量,pytorch实现
时间: 2024-05-07 21:23:33 浏览: 61
pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换
以下是一个简单的超像素池化代码示例,将输入的图像张量和超像素标签张量进行池化。假设输入的图像张量大小为 (batch_size, channels, height, width) ,超像素标签张量大小为 (batch_size, num_superpixels, height, width),超像素池化大小为 pool_size。
```python
import torch
import torch.nn.functional as F
class SuperpixelPooling(torch.nn.Module):
def __init__(self, pool_size):
super(SuperpixelPooling, self).__init__()
self.pool_size = pool_size
def forward(self, x, labels):
# 输入张量维度为 (batch_size, channels, height, width)
# 标签张量维度为 (batch_size, num_superpixels, height, width)
batch_size, num_channels, height, width = x.size()
num_superpixels = labels.size(1)
# 将标签张量 (batch_size, num_superpixels, height, width) 变形为 (batch_size, num_superpixels, height*width)
labels = labels.view(batch_size, num_superpixels, -1)
# 计算每个超像素的大小
sizes = torch.sum(labels, dim=2, keepdim=True)
# 将输入张量 (batch_size, channels, height, width) 变形为 (batch_size, channels, height*width)
x = x.view(batch_size, num_channels, -1)
# 对输入张量和大小进行加权平均池化
x = x * labels
x = F.avg_pool1d(x, kernel_size=self.pool_size, stride=self.pool_size)
sizes = F.avg_pool1d(sizes, kernel_size=self.pool_size, stride=self.pool_size)
x = x / (sizes + 1e-8)
# 将池化后的张量变形为 (batch_size, channels, height/pool_size, width/pool_size)
x = x.view(batch_size, num_channels, height//self.pool_size, width//self.pool_size)
return x
```
使用方法:
```python
# 假设输入的图像张量为 x, 超像素标签张量为 labels,超像素池化大小为 pool_size
pooling_layer = SuperpixelPooling(pool_size)
pooled_x = pooling_layer(x, labels)
```
阅读全文