% 加载数据 load('data.mat'); X_train = train_data; % 训练数据 Y_train = train_labels; % 训练标签 X_test = test_data; % 测试数据 Y_test = test_labels; % 测试标签 % 构建神经网络 layers = [ imageInputLayer([28 28 1]) convolution2dLayer(3, 32, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) convolution2dLayer(3, 64, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) convolution2dLayer(3, 128, 'Padding', 'same') batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer ]; % 设置训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 10, ... 'MiniBatchSize', 128, ... 'ValidationData', {X_test, Y_test}, ... 'Plots', 'training-progress'); % 训练网络 net = trainNetwork(X_train, Y_train, layers, options); % 测试网络 YPred = classify(net, X_test); % 计算准确率 accuracy = sum(YPred == Y_test) / numel(Y_test); fprintf('Accuracy: %.2f%%\n', accuracy * 100); 这段代码不能运行,如何解决?
时间: 2023-06-24 22:05:44 浏览: 215
在这段代码中,您需要确保已经定义 train_data、train_labels、test_data 和 test_labels。如果您没有定义这些变量,那么您需要将您的数据加载进来,例如:
```matlab
load('mnist.mat');
X_train = mnist.train_images;
Y_train = categorical(mnist.train_labels);
X_test = mnist.test_images;
Y_test = categorical(mnist.test_labels);
```
另外,您需要确保您的 MATLAB 版本支持深度学习工具箱。如果您的版本不支持,您需要更新 MATLAB 或者安装深度学习工具箱。
相关问题
function untitled() load('D:\mat格式的MNIST数据\test_labels.mat') load('D:\mat格式的MNIST数据\train_images.mat') load('D:\mat格式的MNIST数据\train_labels.mat') load('D:\mat格式的MNIST数据\test_images.mat') train_num = 60000; test_num = 200; %训练数据,图像转向量 data_train = mat2vector(train_images(:,:,1:train_num),train_num); data_test = mat2vector(test_images(:,:,1:test_num),test_num); % 处理训练数据,防止后验概率为0 [data_train,position] = fun(data_train,train_labels1(1:train_num)'); % 处理测试数据 for rows = 1:10 data_test(:,position{1,rows})=[]; end %模型部分 % 超参数全部取了默认值,比较重要的,如类别的先验概率,如果不进行修改,则计算输入数据中类别的频率 % 查看nb_model即可确认所使用的超参数 Mdl = fitcnb(data_train,train_labels1(1:train_num)); %训练模型 %测试结果 result = predict(Mdl,data_test); result = result.'; xlabel=[0,1,2,3,4,5,6,7,8,9]; resultbar = [0,0,0,0,0,0,0,0,0,0]; testbar = [0,0,0,0,0,0,0,0,0,0]; for i = 1:test_num temp1=result(i); temp1=temp1+1; resultbar(temp1)=resultbar(temp1)+1; temp2=test_labels1(i); temp2=temp2+1; testbar(temp2)=testbar(temp2)+1; end bar(xlabel, [resultbar' testbar']); % 整体正确率 acc = 0.; for i = 1:test_num if result(i)==test_labels1(i) acc = acc+1; end end title('精确度为:',(acc/test_num)*100) end 这个代码中,以下两行有错误:data_train = mat2vector(train_images(:,:,1:train_num),train_num); data_test = mat2vector(test_images(:,:,1:test_num),test_num);为什么
这两行代码中使用的`mat2vector`函数是自定义函数,需要在代码中定义才能使用。如果没有定义这个函数,可以尝试使用下面这个函数来实现相同的功能:
```
function [output] = mat2vector(input, num)
% 将3维矩阵转换为2维矩阵
output = reshape(input, size(input,1)*size(input,2), num)';
end
```
这个函数将`train_images`和`test_images`转换为大小为`train_num`和`test_num`的2维矩阵。另外,如果训练数据和测试数据的大小不对,也会导致错误。需要确认`train_num`和`test_num`的取值是否正确。
可以帮我把以下代码转成python语言吗:%data = randn(1000,16); %label = randi([0,1],1000,1); % data_trainnn_struct=load("data_trainn.mat"); label_trainnn_struct=load("label_trainn.mat"); data_trainnn=data_trainnn_struct.data; label_trainnn=label_trainnn_struct.label; % 数据预处理 data = zscore(data_trainnn); % 标准化数据 label = categorical(label_trainnn); % 标签划分为分类变量类型 % 进行数据集的划分 cv = cvpartition(length(label_trainnn), 'HoldOut', 0.3); idxTrain = training(cv); idxTest = test(cv); trainData = data(idxTrain,:); trainLabel = label(idxTrain); testData = data(idxTest,:); testLabel = label(idxTest); % 训练分类器 mdl = fitcecoc(trainData, trainLabel); % 预测测试集 predLabel = predict(mdl, testData); % 计算准确率 accuracy = sum(predLabel == testLabel)/numel(testLabel); disp(['Accuracy: ', num2str(accuracy)]); newData = data_filtered'; %代入滤波数据 % 对未知的样本进行数据预处理 newData = zscore(newData); % 训练完毕的分类器 predLabel = predict(mdl, newData); predLabels = double(predLabel); anss=0; %划分标准 avg = mean(predLabels); if abs(avg - 0.5) < 1 anss=1; elseif abs(avg) >= 1.5 anss=0; end
以下是转换后的 Python 代码:
```python
import numpy as np
from scipy.io import loadmat
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
# 加载数据和标签
data = np.random.randn(1000, 16)
label = np.random.randint(2, size=(1000,))
data_trainnn_struct = loadmat('data_trainn.mat')
label_trainnn_struct = loadmat('label_trainn.mat')
data_trainnn = data_trainnn_struct['data']
label_trainnn = label_trainnn_struct['label']
# 数据预处理
scaler = StandardScaler()
data = scaler.fit_transform(data_trainnn)
label = label_trainnn.astype('category')
# 进行数据集的划分
train_data, test_data, train_label, test_label = train_test_split(
data, label, test_size=0.3, random_state=42)
# 训练分类器
clf = SVC(decision_function_shape='ovo')
clf.fit(train_data, train_label)
# 预测测试集
pred_label = clf.predict(test_data)
# 计算准确率
accuracy = accuracy_score(test_label, pred_label)
print('Accuracy:', accuracy)
# 对未知的样本进行数据预处理
new_data = data_filtered.T
# 数据预处理
new_data = scaler.transform(new_data)
# 预测未知样本
pred_label = clf.predict(new_data)
pred_labels = pred_label.astype(int)
# 划分标准
avg = pred_labels.mean()
if abs(avg - 0.5) < 1:
anss = 1
elif abs(avg) >= 1.5:
anss = 0
```
阅读全文