简述分治法,动态规划法,回溯法,分支限界法,贪心算法的算法框架,瓶颈以及优化思路
时间: 2023-11-07 16:34:33 浏览: 118
1. 分治法:将一个大问题分解成多个子问题,对子问题进行求解并将结果合并起来得出大问题的解。算法框架如下:
- 分解阶段:将大问题分解成多个子问题
- 解决阶段:对每个子问题进行求解
- 合并阶段:将子问题的解合并起来得出大问题的解
- 瓶颈:如果子问题之间存在依赖关系,会导致子问题重复求解,影响算法效率。
- 优化思路:使用记忆化搜索或动态规划等方法可以减少重复计算。
2. 动态规划法:通过将问题分解成子问题并保存已解决子问题的答案,避免重复计算,从而求解整个问题。算法框架如下:
- 状态表示:定义状态表示问题的局面
- 状态转移:描述状态之间的联系
- 边界条件:确定初始状态及边界状态
- 求解目标:得到问题的最终结果
- 瓶颈:状态数过大会影响算法效率。
- 优化思路:使用滚动数组、递推等方法可以减少空间复杂度;优化状态转移方程或使用剪枝方法可以减少时间复杂度。
3. 回溯法:采用试错思想,利用递归函数枚举所有解空间中的可行解,找到符合要求的解。算法框架如下:
- 选择阶段:按照一定的规则选择一个节点
- 撤销选择:撤销这个节点的选择
- 结束条件:达到结束条件时,保存可行解,返回结果
- 瓶颈:存在大量的无效搜索,需要剪枝减少搜索空间。
- 优化思路:合理设计搜索顺序、提前检查不能满足要求的节点可以减少回溯次数;使用剪枝等方法可以减少搜索空间。
4. 分支限界法:通过设定优先级队列,采用广度优先搜索,不断扩展状态空间,从而找到最优解。算法框架如下:
- 扩展阶段:从当前状态出发,扩展状态空间
- 限界函数:计算该状态下的可行解的上界或下界
- 状态存储:记录每个状态的属性,包括当前状态和限界函数值等
- 瓶颈:状态空间较大时,搜索时间复杂度较高。
- 优化思路:调整状态扩展顺序、剪枝操作或采用启发式搜索等方法可以减少搜索次数和搜索时间。
5. 贪心算法:每一步采取最优策略,从而使最终结果最优。算法框架如下:
- 贪心策略:确定局部最优解的选择方式
- 局部最优解:选择对问题的整体最优解没有影响的局部最优解
- 可行性判断:判断当前的局部最优解是否符合问题的约束条件
- 合并步骤:将每个局部最优解合并为问题的整体最优解
- 瓶颈:贪心策略可能导致全局最优解不可得;考虑贪心算法时应确定问题是否满足贪心选择性质。
- 优化思路:最优子结构性质与贪心选择性质必须满足才能使用贪心算法;使用贪心法求得的局部最优解,可能不是全局最优解,因此,需要引入一些限制条件(如时间限制、空间限制等)。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20210720083736.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![pdf](https://img-home.csdnimg.cn/images/20210720083512.png)
![zip](https://img-home.csdnimg.cn/images/20210720083736.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![-](https://img-home.csdnimg.cn/images/20210720083327.png)
![-](https://img-home.csdnimg.cn/images/20210720083327.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![-](https://img-home.csdnimg.cn/images/20210720083327.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)