BBHE算法 python代码
时间: 2023-07-23 20:08:07 浏览: 641
以下是BBHE算法的Python实现代码:
```python
import cv2
def BBHE(img):
# 计算直方图
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
# 归一化直方图
hist_norm = hist / (img.shape[0] * img.shape[1])
# 计算累计分布函数
cdf = hist_norm.cumsum()
# 计算映射表
map_table = (255 * cdf).astype('uint8')
# 应用映射表
img_eq = cv2.LUT(img, map_table)
return img_eq
```
其中,img为输入的灰度图像,返回值为BBHE均衡化后的图像img_eq。本代码使用了OpenCV库,需要先安装。
相关问题
bbhe算法 matlab
bbhe算法(基于双峰直方图均衡化)是一种用于增强图像对比度的算法,它可以帮助我们在图像处理中改善图像的视觉效果。在Matlab中,我们可以通过以下步骤来实现bbhe算法:
首先,我们需要读取图像并将其转换为灰度图像。可以使用Matlab中的imread函数来读取图像,并使用rgb2gray函数将其转换为灰度图像。
然后,我们可以使用bbhe算法来增强灰度图像的对比度。在Matlab中,我们可以通过编写自定义的bbhe算法函数来实现这一步骤。该函数应该包括计算直方图的双峰位置、分割直方图并进行均衡化等操作。
接下来,我们可以调用自定义的bbhe函数并将灰度图像作为输入参数,以获取增强对比度后的图像。
最后,我们可以使用imshow函数来显示原始图像和增强对比度后的图像,以便直观地比较它们之间的视觉效果。
通过以上步骤,我们可以在Matlab中实现bbhe算法,并用于增强图像对比度。这可以帮助我们改善图像的视觉效果,使得图像中的目标更加清晰可见。
图像直方图均衡BBHE
好的,关于图像直方图均衡BBHE,我可以为您解答。BBHE是指基于双边直方图的图像直方图均衡算法,它可以在保持图像整体亮度的同时增强图像的对比度。
具体来说,BBHE算法首先将图像分成若干个子区域,然后对每个子区域进行直方图均衡,最后将所有子区域的均衡结果拼接起来得到整幅图像的均衡结果。
相比于传统的全局直方图均衡算法,BBHE算法可以更好地处理图像中存在大量局部细节的情况,从而得到更好的均衡效果。
阅读全文