flink将KafkaSource<ObjectNode>转化为DataStream<RowData>
时间: 2024-05-06 15:17:32 浏览: 211
要将Flink的KafkaSource<ObjectNode>转换为DataStream<RowData>,需要进行以下步骤:
1. 创建一个DeserializationSchema,将ObjectNode反序列化为RowData对象。例如,可以使用JsonRowDataDeserializationSchema。
2. 使用KafkaSource从Kafka主题中读取ObjectNode对象,并使用上一步中创建的DeserializationSchema将其转换为RowData对象。
3. 在DataStream上应用map操作,将RowData对象转换为所需的格式。
下面是一个示例代码,使用JsonRowDataDeserializationSchema将ObjectNode转换为RowData,然后将其转换为Tuple2<String, String>:
```
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.formats.json.JsonRowDataDeserializationSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.TableSchema;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.Row;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.util.Properties;
public class KafkaObjectNodeToRowData {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
// create a DeserializationSchema to deserialize ObjectNode to RowData
RowType rowType = new RowType(
new TableSchema.Builder()
.field("id", DataTypes.BIGINT())
.field("name", DataTypes.STRING())
.build().toRowDataType().getChildren());
DeserializationSchema<RowData> deserializationSchema = new JsonRowDataDeserializationSchema(rowType);
// create a FlinkKafkaConsumer to read ObjectNode from Kafka
FlinkKafkaConsumer<ObjectNode> kafkaConsumer = new FlinkKafkaConsumer<>("my-topic", deserializationSchema, properties);
// read from Kafka and convert ObjectNode to RowData
DataStream<RowData> rowDataStream = env.addSource(kafkaConsumer)
.map(objectNode -> {
// convert ObjectNode to RowData
Row row = new Row(objectNode.size());
for (int i = 0; i < objectNode.size(); i++) {
row.setField(i, objectNode.get(i).asText());
}
return row;
})
.returns(new RowTypeInfo(rowType.getFields().stream().map(RowType.RowField::getType).toArray(TypeInformation[]::new), rowType.getFieldNames().toArray(new String[0])));
// convert RowData to Tuple2<String, String>
DataStream<Tuple2<String, String>> tupleStream = rowDataStream
.map(rowData -> Tuple2.of(rowData.getField(0).toString(), rowData.getField(1).toString()))
.returns(Types.TUPLE(Types.STRING, Types.STRING));
// do something with the tupleStream
tupleStream.print();
env.execute("KafkaObjectNodeToRowData");
}
}
```
阅读全文