数据中第一行显示了每一列的属性x1-x40,最后一列表示class,For students who are interested in the clustering property of the NMF, you may apply the NMF to electrical brain signals data clustering. For more background knowledge about the electrical brain signals clustering, please refer to the Kaggle note here. If possible, please give the visualization results (or any other analytical results) for clustering, where the dataset file can be downloaded from the ‘./ebs/waveform-5000.csv’. python实现,中文注释
时间: 2024-03-14 07:43:58 浏览: 59
好的,你的问题是关于使用NMF进行电脑脑电信号聚类的Python代码实现和可视化结果的。下面是一个Python实现的代码示例(附有中文注释):
```python
import numpy as np
import pandas as pd
from sklearn.decomposition import NMF
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('./ebs/waveform-5000.csv', header=None)
X = data.iloc[:, :-1].values
# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)
# NMF模型训练
model = NMF(n_components=5, max_iter=1000, random_state=0)
W = model.fit_transform(X)
H = model.components_
# 可视化聚类结果
plt.scatter(W[:, 0], W[:, 1], c=W[:, 2])
plt.title('NMF Clustering Result')
plt.show()
```
这段代码使用了scikit-learn库中的NMF模型进行聚类,其中数据标准化使用了StandardScaler类。最终的聚类结果可视化使用matplotlib库实现。注意,代码中的数据文件路径需要根据实际情况进行修改。
阅读全文