写一段matlab差分进化代码,其中种群分为两类,一类是30到100,另一类是300到100000
时间: 2023-09-18 08:05:28 浏览: 74
### 回答1:
好的,我可以回答这个问题。以下是一段matlab差分进化代码,其中种群分为两类,一类是30到100,另一类是300到100000:
% 定义种群大小
pop_size1 = randi([30, 100], 1);
pop_size2 = randi([300, 100000], 1);
% 初始化种群
pop1 = rand(pop_size1, n);
pop2 = rand(pop_size2, n);
% 定义差分进化参数
F = .8;
CR = .9;
max_gen = 100;
% 循环迭代
for gen = 1:max_gen
% 选择父代
parent_pop = pop1;
% 变异
mutant_pop = parent_pop(randperm(pop_size1, pop_size1), :);
for i = 1:pop_size1
r1 = randi([1, pop_size1], 1);
r2 = randi([1, pop_size1], 1);
r3 = randi([1, pop_size1], 1);
mutant_pop(i, :) = parent_pop(r1, :) + F * (parent_pop(r2, :) - parent_pop(r3, :));
end
% 交叉
trial_pop = parent_pop;
for i = 1:pop_size1
j_rand = randi([1, n], 1);
for j = 1:n
if rand() <= CR || j == j_rand
trial_pop(i, j) = mutant_pop(i, j);
end
end
end
% 选择
for i = 1:pop_size1
if fitness(trial_pop(i, :)) < fitness(parent_pop(i, :))
parent_pop(i, :) = trial_pop(i, :);
end
end
% 更新种群
pop1 = parent_pop;
% 选择父代
parent_pop = pop2;
% 变异
mutant_pop = parent_pop(randperm(pop_size2, pop_size2), :);
for i = 1:pop_size2
r1 = randi([1, pop_size2], 1);
r2 = randi([1, pop_size2], 1);
r3 = randi([1, pop_size2], 1);
mutant_pop(i, :) = parent_pop(r1, :) + F * (parent_pop(r2, :) - parent_pop(r3, :));
end
% 交叉
trial_pop = parent_pop;
for i = 1:pop_size2
j_rand = randi([1, n], 1);
for j = 1:n
if rand() <= CR || j == j_rand
trial_pop(i, j) = mutant_pop(i, j);
end
end
end
% 选择
for i = 1:pop_size2
if fitness(trial_pop(i, :)) < fitness(parent_pop(i, :))
parent_pop(i, :) = trial_pop(i, :);
end
end
% 更新种群
pop2 = parent_pop;
end
注意,这只是一个简单的示例代码,具体实现可能需要根据具体问题进行调整。
### 回答2:
下面是一个使用差分进化算法的MATLAB代码段,并将种群分为两类——一类是30到100的范围,另一类是300到100000的范围。
```MATLAB
% 差分进化函数
function [bestSolution, bestFitness] = differentialEvolution(populationSize, lowerBound1, upperBound1, lowerBound2, upperBound2)
% 初始化种群
population1 = randi([lowerBound1, upperBound1], populationSize, 1);
population2 = randi([lowerBound2, upperBound2], populationSize, 1);
population = [population1, population2];
% 设置其他参数(在这里没有给出)
crossoverRate = 0.8;
differentialWeight = 0.5;
maxGenerations = 100;
% 主循环
for generation = 1:maxGenerations
newPopulation = population;
for i = 1:populationSize
% 随机选择3个不同个体
randomIndices = randperm(populationSize, 3);
randomPopulation = population(randomIndices, :);
% 差分步骤
trialVector = randomPopulation(1, :) + differentialWeight * (randomPopulation(2, :) - randomPopulation(3, :));
% 交叉操作
mask = rand(size(trialVector)) < crossoverRate;
trialVector(mask) = population(i, mask);
% 评估个体适应度
fitness = evaluateFitness(trialVector); % 自定义的评估函数
% 更新种群
if fitness > evaluateFitness(population(i, :))
newPopulation(i, :) = trialVector;
end
end
population = newPopulation;
end
% 返回最佳个体和适应度
[bestFitness, bestIndex] = max(evaluateFitness(population));
bestSolution = population(bestIndex, :);
end
```
你可以根据实际任务需求自定义`evaluateFitness`函数,该函数评估个体的适应度。这个代码段会生成两个种群,一个在30到100的范围内,另一个在300到100000的范围内,它们在差分进化算法的每一代中进行交叉和变异操作。最后,会返回最佳个体和适应度。请根据你的具体问题进行必要的修改和调整。
### 回答3:
差分进化(Differential Evolution,简称DE)是一种经典的优化算法,常用于求解连续优化问题。下面是一个使用MATLAB编写的差分进化代码示例,其中种群分为两类。一类种群的范围为30到100,另一类种群的范围为300到100000。
```matlab
% 设置参数
pop_size = 50; % 种群大小
dim = 5; % 个体维度
max_gen = 100; % 最大迭代次数
lower_bounds1 = 30; % 种群1下界
upper_bounds1 = 100; % 种群1上界
lower_bounds2 = 300; % 种群2下界
upper_bounds2 = 100000; % 种群2上界
% 初始化种群
population1 = rand(pop_size, dim) .* (upper_bounds1 - lower_bounds1) + lower_bounds1;
population2 = rand(pop_size, dim) .* (upper_bounds2 - lower_bounds2) + lower_bounds2;
% 迭代优化
for i = 1:max_gen
% 生成新个体
new_population1 = zeros(pop_size, dim);
new_population2 = zeros(pop_size, dim);
for j = 1:pop_size
% 随机选择3个不同的个体
r1 = randi([1, pop_size]);
r2 = randi([1, pop_size]);
r3 = randi([1, pop_size]);
while r1 == r2 || r1 == r3 || r2 == r3
r1 = randi([1, pop_size]);
r2 = randi([1, pop_size]);
r3 = randi([1, pop_size]);
end
% 差分变异操作
mutant1 = population1(r1, :) + 0.5 * (population1(r2, :) - population1(r3, :));
mutant2 = population2(r1, :) + 0.5 * (population2(r2, :) - population2(r3, :));
% 边界限制
mutant1(mutant1 < lower_bounds1) = lower_bounds1;
mutant1(mutant1 > upper_bounds1) = upper_bounds1;
mutant2(mutant2 < lower_bounds2) = lower_bounds2;
mutant2(mutant2 > upper_bounds2) = upper_bounds2;
% 交叉操作
j_rand = randi([1, dim]);
trial1 = population1(j, :);
trial1(j_rand) = mutant1(j_rand);
trial2 = population2(j, :);
trial2(j_rand) = mutant2(j_rand);
% 选择操作
if fitness(trial1) < fitness(population1(j, :))
new_population1(j, :) = trial1;
else
new_population1(j, :) = population1(j, :);
end
if fitness(trial2) < fitness(population2(j, :))
new_population2(j, :) = trial2;
else
new_population2(j, :) = population2(j, :);
end
end
% 更新种群
population1 = new_population1;
population2 = new_population2;
end
```
以上是一个基本的差分进化代码框架,其中涉及到个体的变异、交叉和选择操作。根据实际问题和目标函数,你需要自己定义适应度函数(fitness)并进行相应的修改。在代码中,每个个体是一个行向量,种群1和种群2分别存储不同范围的个体。通过调整参数和适应度函数,你可以将其用于你的具体应用。
阅读全文