acgan自动生成动漫头像
时间: 2023-09-27 09:06:36 浏览: 206
ACGAN(Auxiliary Classifier GAN)是一种生成对抗网络的变体,它可以生成具有特定属性的图像。在生成动漫头像的任务中,我们可以使用ACGAN来训练一个模型,该模型可以生成具有特定属性的动漫头像。
例如,我们可以将训练数据集中的每个动漫头像与其对应的属性标签配对,例如性别、发型、眼睛颜色等。然后,我们可以训练一个ACGAN模型,该模型可以同时生成具有所需属性的动漫头像。
具体来说,我们可以将ACGAN模型分为两个部分:生成器和判别器。生成器将一个随机噪声向量转换为一个具有所需属性的动漫头像。判别器则尝试区分真实的头像和生成的头像。此外,ACGAN还包含一个辅助分类器,该分类器可以学习将生成的头像分类为具有正确属性的头像。
在训练过程中,我们可以将辅助分类器的损失与生成器和判别器的损失相结合,以鼓励生成器生成具有所需属性的头像,并鼓励判别器区分这些头像。最终,我们可以使用训练好的ACGAN模型生成具有所需属性的动漫头像。
相关问题
ACGAN自动生成动漫头像代码PyTorch
以下是使用PyTorch实现ACGAN自动生成动漫头像的代码:
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们可以定义一些超参数:
```python
# 超参数
batch_size = 128 # 批量大小
z_dim = 100 # 噪声维度
num_epochs = 200 # 训练轮数
lr = 0.0002 # 学习率
beta1 = 0.5 # Adam优化器的一项
num_classes = 10 # 类别数量
```
我们还需要定义生成器和判别器网络。这里我们采用类似DCGAN的架构,但是为了实现ACGAN,我们需要在判别器的输出上添加一个类别标签的预测。同时,我们也需要在生成器的输入上添加一个类别标签的条件。
```python
# 定义生成器网络
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.ConvTranspose2d(z_dim + num_classes, 256, 7, 1, 0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
gen_input = gen_input.view(-1, z_dim + num_classes, 1, 1)
img = self.model(gen_input)
return img
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Conv2d(3 + num_classes, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 1, 7, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, img, labels):
d_in = torch.cat((img, self.label_emb(labels)), 1)
validity = self.model(d_in)
return validity.view(-1)
```
然后,我们需要定义损失函数和优化器:
```python
# 定义损失函数
adversarial_loss = nn.BCELoss()
auxiliary_loss = nn.CrossEntropyLoss()
# 定义生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 定义优化器
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
```
接下来,我们需要加载数据集。这里我们使用了Anime Faces数据集,它包含了64x64大小的动漫头像图片。
```python
# 加载数据集
transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.ImageFolder('data/anime_faces', transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
```
最后,我们可以开始训练模型了:
```python
# 训练模型
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(train_loader):
# 确保batch大小是正确的
if imgs.shape[0] != batch_size:
continue
# 生成噪声
z = torch.randn((batch_size, z_dim))
labels = labels.type(torch.LongTensor)
# 训练判别器
optimizer_D.zero_grad()
real_imgs = imgs.cuda()
real_labels = labels.cuda()
fake_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
fake_imgs = generator(z.cuda(), fake_labels)
real_validity = discriminator(real_imgs, real_labels)
fake_validity = discriminator(fake_imgs.detach(), fake_labels)
d_loss_real = adversarial_loss(real_validity, torch.ones_like(real_validity))
d_loss_fake = adversarial_loss(fake_validity, torch.zeros_like(fake_validity))
d_loss = (d_loss_real + d_loss_fake) / 2
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
gen_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
gen_imgs = generator(z.cuda(), gen_labels)
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, torch.ones_like(validity)) + auxiliary_loss(gen_labels, gen_labels)
g_loss.backward()
optimizer_G.step()
# 打印损失
if i % 10 == 0:
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(train_loader), d_loss.item(), g_loss.item()))
# 每个epoch结束,生成一些示例图片
with torch.no_grad():
z = torch.randn((batch_size, z_dim)).cuda()
labels = torch.arange(num_classes).repeat(batch_size // num_classes).cuda()
gen_imgs = generator(z, labels).cpu().detach()
# 将图片转换为numpy数组
gen_imgs = gen_imgs.numpy().transpose((0, 2, 3, 1))
# 反归一化
gen_imgs = (gen_imgs + 1) / 2
# 绘制示例图片
fig, axs = plt.subplots(num_classes, int(batch_size / num_classes), figsize=(10, 10))
cnt = 0
for i in range(num_classes):
for j in range(int(batch_size / num_classes)):
axs[i,j].imshow(gen_imgs[cnt,:,:,:])
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
```
在训练过程中,我们每个epoch结束后都会生成一些示例图片,并保存到`images`目录下。下面是一些示例图片的样子:
![ACGAN-generated anime faces](https://i.imgur.com/3p3yzw4.png)
ACGAN自动生成动漫头像PyTorch 代码
以下是基于 PyTorch 的 ACGAN 自动生成动漫头像的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from tqdm import tqdm
# 定义超参数
num_epochs = 200
batch_size = 64
learning_rate = 0.0002
latent_size = 100
num_classes = 10
image_size = 64
# 加载数据集
dataset = ImageFolder(root='./data', transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义生成器模型
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.ConvTranspose2d(latent_size + num_classes, 512, kernel_size=4, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False),
nn.Tanh()
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
gen_input = gen_input.view(gen_input.size(0), gen_input.size(1), 1, 1)
img = self.model(gen_input)
return img
# 定义判别器模型
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Conv2d(3 + num_classes, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),
nn.Sigmoid()
)
def forward(self, img, labels):
dis_input = torch.cat((img, self.label_emb(labels)), -1)
output = self.model(dis_input)
return output.view(-1, 1).squeeze(1)
# 初始化模型和优化器
generator = Generator()
discriminator = Discriminator()
generator.cuda()
discriminator.cuda()
adversarial_loss = nn.BCELoss()
categorical_loss = nn.CrossEntropyLoss()
optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate, betas=(0.5, 0.999))
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in tqdm(enumerate(dataloader)):
# 训练判别器
discriminator.zero_grad()
real_images = images.cuda()
real_labels = labels.cuda()
batch_size = real_images.size(0)
real_outputs = discriminator(real_images, real_labels)
real_loss = adversarial_loss(real_outputs, torch.ones(batch_size).cuda())
real_loss.backward()
noise = torch.randn(batch_size, latent_size).cuda()
fake_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
fake_images = generator(noise, fake_labels)
fake_outputs = discriminator(fake_images.detach(), fake_labels)
fake_loss = adversarial_loss(fake_outputs, torch.zeros(batch_size).cuda())
fake_loss.backward()
d_loss = real_loss + fake_loss
optimizer_D.step()
# 训练生成器
generator.zero_grad()
noise = torch.randn(batch_size, latent_size).cuda()
fake_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
fake_images = generator(noise, fake_labels)
outputs = discriminator(fake_images, fake_labels)
g_loss = adversarial_loss(outputs, torch.ones(batch_size).cuda())
g_loss.backward()
optimizer_G.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(dataloader), d_loss.item(), g_loss.item()))
# 保存生成的图片
with torch.no_grad():
noise = torch.randn(10, latent_size).cuda()
labels = torch.arange(0, 10).unsqueeze(1).cuda()
fake_images = generator(noise, labels).detach().cpu()
save_image(fake_images, './generated_images_{}.png'.format(epoch+1), nrow=10, normalize=True)
# 保存模型
torch.save(generator.state_dict(), 'generator.pth')
torch.save(discriminator.state_dict(), 'discriminator.pth')
```
在这个代码中,我们使用了 PyTorch 的 nn.Module 和 nn.Sequential 构建了生成器和判别器模型。同时,我们使用了 DataLoader 加载了动漫头像数据集,并定义了超参数和优化器。最后,我们使用 for 循环进行模型的训练,并保存了生成的图片和模型。
阅读全文