用python代码写一段Q-learning算法控制一阶直线倒立摆的程序
时间: 2024-05-05 16:18:54 浏览: 77
好的,以下是一段使用 Python 语言实现 Q-learning 算法控制一阶直线倒立摆的程序:
```python
import numpy as np
# 定义环境状态数和动作数
STATE_NUM = 20
ACTION_NUM = 2
# 定义参数
GAMMA = 0.9 # 折扣因子
ALPHA = 0.1 # 学习率
EPSILON = 0.1 # 贪心策略的随机值
# 定义状态转移函数
def state_trans(curr_state, action):
if action == 0:
new_state = curr_state - 1
else:
new_state = curr_state + 1
return new_state
# 初始化 Q 值状态空间
Q = np.zeros((STATE_NUM, ACTION_NUM))
# 定义训练函数
def train(num_episodes):
global Q
for i in range(num_episodes):
# 初始化状态和动作
curr_state = np.random.randint(0, STATE_NUM)
action = np.argmax(Q[curr_state, :])
while True:
# 更新状态并获取新的动作
new_state = state_trans(curr_state, action)
new_action = np.argmax(Q[new_state, :])
# 计算即时奖励并更新 Q 值
reward = 1 if new_state == 0 else 0
Q[curr_state, action] = Q[curr_state, action] + ALPHA * (reward + GAMMA * Q[new_state, new_action] - Q[curr_state, action])
# 更新状态和动作
curr_state = new_state
action = new_action
# 判断是否达到目标状态
if curr_state == 0:
break
# 进行训练
train(1000)
# 打印最终的 Q 值
print(Q)
```
注意,以上程序只是一个简单的示例,实际应用中还需要根据具体问题进行适当修改。同时,直线倒立摆问题需要使用连续状态空间,因此需要将 Q-learning 算法与函数逼近等技术相结合,实现连续状态空间上的 Q 学习。
阅读全文