public static void main(String[] args) { final int CLUSTER1_NUM = 4; final int CLUSTER2_NUM = 4; final int CLUSTER3_NUM = 4; ArrayList<ArrayList<Double>> dataSet = new ArrayList<ArrayList<Double>>(); // 产生簇1 for (int i = 0; i < CLUSTER1_NUM; i++) { ArrayList<Double> cluster1 = new ArrayList<Double>(); cluster1.add(1 + Math.random() * 2); cluster1.add(1 + Math.random() * 2); dataSet.add(cluster1); } // 产生簇2 for (int i = 0; i < CLUSTER2_NUM; i++) { ArrayList<Double> cluster2 = new ArrayList<Double>(); cluster2.add(Math.random()); cluster2.add(Math.random()); dataSet.add(cluster2); } // 产生簇3 for (int i = 0; i < CLUSTER3_NUM; i++) { ArrayList<Double> cluster3 = new ArrayList<Double>(); cluster3.add(3 + Math.random()); cluster3.add(3 + Math.random()); dataSet.add(cluster3); } KmeansAlgorithm d = new KmeansAlgorithm(); ArrayList<ArrayList<Double>> dd = d.getClusters(dataSet, 3); System.out.println(dd); }请详细解释
时间: 2023-06-26 10:03:57 浏览: 84
这是一个使用 Java 实现的 K-means 算法示例程序。K-means 是一种常用的聚类算法,将数据集分为 K 个簇,每个簇包含最接近它们的点。该程序首先定义了三个常量,分别表示三个簇中数据点的数量。然后,使用 Math.random() 函数生成随机数据集。
接着,创建了一个 KmeansAlgorithm 实例,调用 getClusters() 方法进行聚类,该方法接受两个参数:数据集和簇的数量。该方法会返回一个 ArrayList<ArrayList<Double>> 类型的结果,其中每个子列表表示一个簇,每个子列表包含该簇中的所有数据点坐标。最后,将聚类结果打印输出。
需要注意的是,K-means 算法的聚类结果与初始化时的质心的位置有关,因此多次运行该程序可能会得到不同的结果。
阅读全文