model = torch.load('./model_state_dict.pth')之后,如何打印到控制台
时间: 2024-02-15 13:04:21 浏览: 132
如果你只是想查看模型的结构,可以使用`print()`函数来打印模型的`state_dict()`,例如:
```python
import torch
from my_model import MyModel # 导入你的模型类
model = MyModel() # 创建你的模型实例
model.load_state_dict(torch.load('./model_state_dict.pth'))
# 打印模型结构
print(model.state_dict())
```
如果你想查看整个模型的信息,可以使用`print()`函数来打印模型的字符串表示,例如:
```python
import torch
from my_model import MyModel # 导入你的模型类
model = MyModel() # 创建你的模型实例
model.load_state_dict(torch.load('./model_state_dict.pth'))
# 打印模型信息
print(model)
```
这将打印出模型的字符串表示,其中包括模型的结构和参数信息。如果你有任何其他问题,请随时告诉我。
相关问题
import torch from model import AOD import torchvision.transforms as transforms from PIL import Image import torchvision import cv2 def test_on_img_(state_dict_path, img_cv2): state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))['state_dict'] model = AOD() model.load_state_dict(state_dict) img = Image.fromarray(img_cv2) img = transforms.ToTensor()(img) img = img.unsqueeze(0) result_img = model(img) return result_img def test_on_img(state_dict_path, image): state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))['state_dict'] model = AOD() model.load_state_dict(state_dict) img = Image.open(image) img = transforms.ToTensor()(img) img = img.unsqueeze(0) result_img = model(img) return result_img if __name__=='__main__': img_name = 'river' suffix = '.png' result = test_on_img('Dehaze_save/epoch11.pth', 'testbench/'+img_name+suffix) torchvision.utils.save_image(result, 'testbench/'+img_name+'_result'+suffix) 解释这段代码意思
这段代码主要实现了一个使用预训练的 AOD 模型去除图像中雾气的功能。具体来说,代码中定义了两个函数 `test_on_img_()` 和 `test_on_img()`,分别用于对输入的 OpenCV 格式图像和图像文件进行去雾操作。除此之外,代码还定义了一个 `if __name__=='__main__':` 的语句块,用于测试 `test_on_img()` 函数在指定输入图像下的去雾效果。
在 `test_on_img_()` 和 `test_on_img()` 函数中,首先通过 `torch.load()` 函数加载预训练模型的参数,然后使用 AOD 类实例化模型,并将预训练的参数加载到模型中。接着,代码将输入的图像转换为 PyTorch 中的 Tensor 数据,并且在第 0 维上增加一个维度。最后,代码将 Tensor 数据输入到模型中,得到去雾后的结果,并将结果返回。
在 `if __name__=='__main__':` 语句块中,代码首先定义了一个输入图像的名称 `img_name` 和后缀 `suffix`,然后调用 `test_on_img()` 函数对指定图像进行去雾操作,并将去雾后的结果保存到指定文件中。
model=monai.netwoeks.nets.DenseNet264(spatial_dims=3, in_channels=4, out_channels=2, pretrained=False) pthfile=r'/media/sun/sort/best_metric_model_classification3d_dict_densenet264.pth' model.load_state_dict(torch.load(pthfile) model=model.cuda()这段代码的含义
这段代码的作用是:
1. 创建一个名为 `model` 的 DenseNet264 模型,该模型具有 3D 空间维度、输入通道数为 4、输出通道数为 2。
2. 确定了一个预训练权重文件的路径 `pthfile`。
3. 使用 `torch.load()` 函数从 `pthfile` 中加载预训练权重,并将其加载到 `model` 中。
4. 将 `model` 移动到 GPU 上运行,以提高模型计算的速度。
阅读全文