导航函数避开障碍物形成轨迹matlab代码
时间: 2023-10-11 17:05:38 浏览: 62
MATLAB实现移动机械臂的避障轨迹规划(基于快速随机扩展树算法)项目实战
5星 · 资源好评率100%
以下是一个使用曼哈顿距离作为导航函数,并能够避开障碍物形成轨迹的Matlab代码示例:
```matlab
function [path, cost] = Astar_obstacle_avoidance(start, goal, obstacles)
% 输入参数:
% start - 起点坐标
% goal - 终点坐标
% obstacles - 障碍物二维数组,1表示障碍物,0表示可通过
% 输出参数:
% path - 路径数组,每个元素为一个坐标点
% cost - 路径代价
% 初始化起点和终点节点
start_node = struct('pos', start, 'g', 0, 'h', 0, 'parent', []);
goal_node = struct('pos', goal, 'g', Inf, 'h', 0, 'parent', []);
% 初始化open和closed列表
open_list = [start_node];
closed_list = [];
while ~isempty(open_list)
% 从open列表中找到f值最小的节点
[min_f, min_idx] = min([open_list.g] + [open_list.h]);
current_node = open_list(min_idx);
% 如果当前节点是终点,则返回路径
if isequal(current_node.pos, goal_node.pos)
path = backtrack_path(current_node);
cost = current_node.g;
return;
end
% 将当前节点从open列表中移除,并添加到closed列表中
open_list(min_idx) = [];
closed_list(end+1) = current_node;
% 扩展当前节点的邻居节点
neighbors = get_neighbors(current_node, obstacles);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果邻居节点已经在closed列表中,则跳过
if ismember(neighbor, closed_list)
continue;
end
% 计算邻居节点的g值和h值
new_g = current_node.g + 1;
new_h = calculate_h(neighbor.pos, goal_node.pos, obstacles);
% 如果邻居节点已经在open列表中,则更新g值和parent
open_idx = find(ismember(open_list, neighbor));
if ~isempty(open_idx)
if new_g < open_list(open_idx).g
open_list(open_idx).g = new_g;
open_list(open_idx).parent = current_node;
end
% 否则添加邻居节点到open列表中
else
neighbor.g = new_g;
neighbor.h = new_h;
neighbor.parent = current_node;
open_list(end+1) = neighbor;
end
end
end
% 如果open列表已经空了,但是仍然没有找到路径,则返回空
path = [];
cost = Inf;
end
% 获取当前节点的邻居节点,同时考虑避开障碍物
function neighbors = get_neighbors(node, obstacles)
x = node.pos(1);
y = node.pos(2);
neighbors = [];
for i = -1:1
for j = -1:1
if i == 0 && j == 0
continue;
end
if x+i < 1 || x+i > size(obstacles, 1) || y+j < 1 || y+j > size(obstacles, 2)
continue;
end
if obstacles(x+i, y+j)
continue;
end
% 判断是否需要绕过障碍物
if i ~= 0 && j ~= 0 && (obstacles(x+i, y) || obstacles(x, y+j))
continue;
end
neighbors(end+1) = struct('pos', [x+i y+j], 'g', Inf, 'h', 0, 'parent', []);
end
end
end
% 计算导航函数h值,同时考虑避开障碍物
function h = calculate_h(pos, goal, obstacles)
% 计算曼哈顿距离
h = abs(pos(1)-goal(1)) + abs(pos(2)-goal(2));
% 如果当前节点周围存在障碍物,则增加代价
for i = -1:1
for j = -1:1
if i == 0 && j == 0
continue;
end
if pos(1)+i < 1 || pos(1)+i > size(obstacles, 1) || pos(2)+j < 1 || pos(2)+j > size(obstacles, 2)
continue;
end
if obstacles(pos(1)+i, pos(2)+j)
h = h + 10;
end
end
end
end
% 回溯路径
function path = backtrack_path(node)
path = [node.pos];
while ~isempty(node.parent)
node = node.parent;
path = [node.pos; path];
end
end
```
上述代码在A*算法的基础上实现了避开障碍物形成轨迹的功能。在计算导航函数h值时,考虑了当前节点周围存在障碍物的情况,并给路径增加了代价。同时,在获取邻居节点时,也考虑了绕过障碍物的情况。该代码可以在二维障碍物地图上进行路径规划,并返回一条从起点到终点的最短路径。
阅读全文