heart_disperse, heart_scaler = np.load('heart_disperse.npy', allow_pickle=True), np.load('heart_scaler.npy', allow_pickle=True).item() 详细讲解这句代码
时间: 2023-06-10 21:02:58 浏览: 153
这段代码主要是用来导入名为"heart_disperse.npy"和"heart_scaler.npy"的文件,并将它们加载到变量"heart_disperse"和"heart_scaler"中。其中,参数"allow_pickle=True"是为了允许pickle格式的数据(即Python中的序列化数据类型)被加载。最后,使用.item()方法从"heart_scaler"中获取字典对象的内容。这段代码的用途需要更多上下文信息才能确定。
相关问题
diseases_disperse, diseases_sclaer = np.load('diseases_disperse.npy', allow_pickle=True), np.load('diseases_scaler.npy', allow_pickle=True).item()是什么意思
这段代码的意思是通过numpy库中的load函数,从' diseases_disperse.npy'和'diseases_scaler.npy'这两个文件中加载diseases_disperse和diseases_scaler两个变量,并将其保存为字典对象(item()表示将数组类型转换为字典对象)。这些变量可能是在机器学习模型的训练和应用中所需要的。但具体它们是用来干什么的,并不清楚。
def get_data(): data = np.array(pd.read_csv('heart.csv')) disperse_col = [2, 6, 10, 11, 12] disperse_data, disperse_label = [], [] for i in disperse_col: col_data = data[:, i] col_label = list(set(col_data)) disperse_label.append(col_label) col_data = np.array([col_label.index(j) for j in col_data], dtype=np.int) col_data = np.eye(len(col_label))[col_data] disperse_data.append(col_data) disperse_data = np.concatenate(disperse_data, axis=-1) np.save('heart_disperse.npy', np.array(disperse_label)) 讲解一下每个语句的意思
这是一个 Python 函数,函数名为 get_data。函数内部首先读取一个名为 "heart.csv" 的 CSV 文件,并将数据存储在一个 numpy 数组 "data" 中。接下来,函数对数据进行了一些离散化处理,将原数据中的某些列进行了处理,其中第 2、6、10、11 和 12 列为离散化列。处理结果分别保存在 disperse_data 和 disperse_label 中。在处理离散化时,对于每一列数据,首先获取该列的所有取值,将这些取值作为标签存储在 disperse_label 中。然后遍历该列数据,根据取值在标签中的位置,将该列的数据转换成一个 one-hot 编码的向量,将所有列的编码向量拼接成一个大矩阵 disperse_data。最后将 disperse_label 保存为一个名为 "heart_disperse.npy" 的 numpy 数组文件。
阅读全文