python fig.add_axes和subplot
时间: 2024-05-24 13:13:41 浏览: 159
函数有什么区别?
Python的fig.add_axes和subplot函数都可以用于绘制子图,但有一些区别。fig.add_axes函数可以手动指定子图的位置和大小,而subplot函数则根据给定的行数、列数和子图位置自动分配位置和大小。同时,fig.add_axes函数可以创建任意大小和位置的子图,而subplot函数则只能创建等大小的子图。
相关问题
能帮我优化一下下面这段代码并增加一些注释吗import matplotlib matplotlib.use('Qt5Agg') from numpy import pi, sin import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons def signal(amp, freq): return amp * sin(2 * pi * freq * t) axis_color = 'lightgoldenrodyellow' fig = plt.figure() ax = fig.add_subplot(111) fig.subplots_adjust(left=0.25, bottom=0.25) t = np.arange(-10, 10.0, 0.001) [line] = ax.plot(t, signal(5, 2), linewidth=2, color='red') ax.set_xlim([0, 1]) ax.set_ylim([-10, 10]) zoom_slider_ax = fig.add_axes([0.25, 0.1, 0.65, 0.03], facecolor=axis_color) zoom_slider = Slider(zoom_slider_ax, 'Zoom', -1, 1, valinit=0) def sliders_on_changed(val, scale_factor=0.25): cur_xlim = ax.get_xlim() cur_ylim = ax.get_ylim() scale = zoom_slider.val*scale_factor x_left = 0 + scale x_right = 1 - scale y_top = 10 - scale*10 y_bottom = -10 + scale*10 ax.set_xlim([x_left, x_right]) ax.set_ylim([y_bottom, y_top]) fig.canvas.draw_idle() zoom_slider.on_changed(sliders_on_changed) reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04]) reset_button = Button(reset_button_ax, 'Reset', color=axis_color, hovercolor='0.975') def reset_button_on_clicked(mouse_event): zoom_slider.reset() reset_button.on_clicked(reset_button_on_clicked) color_radios_ax = fig.add_axes([0.025, 0.5, 0.15, 0.15], facecolor=axis_color) color_radios = RadioButtons(color_radios_ax, ('red', 'blue', 'green'), active=0) def color_radios_on_clicked(label): line.set_color(label) fig.canvas.draw_idle() color_radios.on_clicked(color_radios_on_clicked) plt.show()
当然可以,下面是代码的优化和注释:
```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
# 定义信号函数
def signal(amp, freq, t):
return amp * np.sin(2 * np.pi * freq * t)
# 设置图形参数
axis_color = 'lightgoldenrodyellow'
fig, ax = plt.subplots()
fig.subplots_adjust(left=0.25, bottom=0.25)
# 设置时间轴
t = np.arange(-10, 10.0, 0.001)
# 绘制信号曲线
[line] = ax.plot(t, signal(5, 2, t), linewidth=2, color='red')
ax.set_xlim([0, 1])
ax.set_ylim([-10, 10])
# 添加缩放滑块
zoom_slider_ax = fig.add_axes([0.25, 0.1, 0.65, 0.03], facecolor=axis_color)
zoom_slider = Slider(zoom_slider_ax, 'Zoom', -1, 1, valinit=0)
# 滑块改变时的回调函数
def sliders_on_changed(val, scale_factor=0.25):
cur_xlim = ax.get_xlim()
cur_ylim = ax.get_ylim()
scale = zoom_slider.val*scale_factor
x_left = 0 + scale
x_right = 1 - scale
y_top = 10 - scale*10
y_bottom = -10 + scale*10
ax.set_xlim([x_left, x_right])
ax.set_ylim([y_bottom, y_top])
fig.canvas.draw_idle()
zoom_slider.on_changed(sliders_on_changed)
# 添加重置按钮
reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
reset_button = Button(reset_button_ax, 'Reset', color=axis_color, hovercolor='0.975')
# 重置按钮点击时的回调函数
def reset_button_on_clicked(mouse_event):
zoom_slider.reset()
reset_button.on_clicked(reset_button_on_clicked)
# 添加颜色选择按钮
color_radios_ax = fig.add_axes([0.025, 0.5, 0.15, 0.15], facecolor=axis_color)
color_radios = RadioButtons(color_radios_ax, ('red', 'blue', 'green'), active=0)
# 颜色选择按钮点击时的回调函数
def color_radios_on_clicked(label):
line.set_color(label)
fig.canvas.draw_idle()
color_radios.on_clicked(color_radios_on_clicked)
plt.show()
```
优化如下:
1. 将 `sin` 改为 `np.sin`,避免使用 `from numpy import *` 导致命名冲突或覆盖内置函数。
2. 将 `signal` 函数中的 `t` 参数移动到函数参数列表中,增加代码可读性。
3. 将 `fig, ax` 和 `plt.subplots()` 合并成一个语句,简化代码。
4. 在 `Slider`、`Button` 和 `RadioButtons` 的初始化中,添加 `color` 和 `hovercolor` 参数,避免鼠标悬停时颜色过于明亮。
5. 将回调函数和控件的绑定分别放在不同的代码块中,增加代码可读性。
怎样调节ax = fig.add_axes(Axes3D(fig))的边距,去掉周边的空白?
在Matplotlib的3D图形中,如果你想要调整添加到`fig`中的`Axes3D`对象的边距并减少周围空白区域,可以使用`ax.set_position()`方法来设置轴的位置和大小。这个方法允许你调整轴的左、右、下、上边界以及它们之间的缩进。
例如,如果你想让轴紧贴图框边缘,你可以使用像这样的设置:
```python
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 设置轴的边距为0,使得它紧贴图框
ax.set_position([0, 0, 1, 1])
# 或者更具体的,比如减小顶部和底部的边距
ax.set_position([0.1, 0.1, 0.8, 0.8])
# 其他参数可以根据需要调整
ax.set_facecolor('white') # 可选,改变背景颜色消除额外空白
# 然后你可以继续绘制3D图形...
```
通过这种方式,你应该能看到减少了周围的空白空间。记得在完成所有绘图操作后显示图形:
```python
plt.show()
```
阅读全文