self.conv1_gates = nn.Conv2d
时间: 2023-06-23 20:08:17 浏览: 178
我看到你的代码中定义了一个名为 `conv1_gates` 的卷积层,它是一个二维卷积层,具体实现可以看下面的代码示例:
```python
import torch.nn as nn
self.conv1_gates = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1, bias=True)
```
其中,`in_channels` 表示输入数据的通道数,这里为 3,因为是 RGB 彩色图片;`out_channels` 表示输出通道数,这里为 32;`kernel_size` 表示卷积核的大小,这里为 3x3;`stride` 表示卷积核在每个维度上的步长,这里为 1;`padding` 表示在输入数据周围填充的大小,这里为 1;`bias` 表示是否使用偏置项。
这个卷积层的作用是提取输入数据的特征,以便后续的处理。
相关问题
torch.nn没有ConvLSTM2d怎么回事
确实,PyTorch的torch.nn模块中没有提供ConvLSTM2d。不过,你可以使用第三方库如`kornia`或`torchkbnufft`等提供的实现来使用ConvLSTM2d。
也可以自己实现ConvLSTM2d。实现方式类似于标准的LSTM,但是将线性变换替换为卷积操作。以下是一个简单的示例代码:
```python
import torch
import torch.nn as nn
class ConvLSTM2dCell(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size):
super(ConvLSTM2dCell, self).__init__()
padding = kernel_size // 2
self.conv_xh = nn.Conv2d(in_channels, hidden_channels, kernel_size, padding=padding)
self.conv_hh = nn.Conv2d(hidden_channels, hidden_channels, kernel_size, padding=padding)
def forward(self, x, h, c):
input = torch.cat([x, h], dim=1)
gates = self.conv_xh(input) + self.conv_hh(h)
i_gate, f_gate, o_gate, g_gate = torch.split(gates, gates.size(1) // 4, dim=1)
i_gate = torch.sigmoid(i_gate)
f_gate = torch.sigmoid(f_gate)
o_gate = torch.sigmoid(o_gate)
g_gate = torch.tanh(g_gate)
c_new = f_gate * c + i_gate * g_gate
h_new = o_gate * torch.tanh(c_new)
return h_new, c_new
class ConvLSTM2d(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size, num_layers):
super(ConvLSTM2d, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
cell_list = []
for i in range(num_layers):
if i == 0:
input_channels = in_channels
else:
input_channels = hidden_channels
cell_list.append(ConvLSTM2dCell(input_channels, hidden_channels, kernel_size))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, x):
batch_size, seq_len, channels, height, width = x.size()
h_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)]
c_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)]
for layer_idx in range(self.num_layers):
for seq_idx in range(seq_len):
x_input = x[:, seq_idx, :, :, :]
h, c = h_list[-1], c_list[-1]
h_new, c_new = self.cell_list[layer_idx](x_input, h, c)
h_list.append(h_new)
c_list.append(c_new)
return torch.stack(h_list[1:], dim=1)
```
这是一个ConvLSTM2d的简单实现,包含了单个ConvLSTM2d单元和多层ConvLSTM2d的实现。你可以根据自己的需要进行调整和修改。
用python pytochj写一个 5帧数据输入 包含 卷积+convLSTM 卷积操作块+conv+BatchNorm2d+分割输出
好的,这个问题是技术问题,可以回答。以下是一个示例代码:
```python
import torch
import torch.nn as nn
class ConvLSTMCell(nn.Module):
def __init__(self, input_size, hidden_size):
super(ConvLSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, 3, padding = 1)
def forward(self, input, hidden, cell):
combined = torch.cat((input, hidden), dim=1)
gates = self.Gates(combined)
forget_gate, input_gate, output_gate, cell_gate = gates.chunk(4, dim=1)
forget_gate = torch.sigmoid(forget_gate)
input_gate = torch.sigmoid(input_gate)
cell_gate = torch.tanh(cell_gate)
output_gate = torch.sigmoid(output_gate)
cell = (forget_gate * cell) + (input_gate * cell_gate)
hidden = output_gate * torch.tanh(cell)
return hidden, cell
class ConvLSTMLayer(nn.Module):
def __init__(self, input_size, hidden_size):
super(ConvLSTMLayer, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.ConvLSTMCell = ConvLSTMCell(input_size, hidden_size)
def forward(self, input, Hidden_State=None, Cell_State=None):
if Hidden_State is None:
Hidden_State = torch.zeros(input.size()[0], self.hidden_size, input.size()[2], input.size()[3]).cuda()
if Cell_State is None:
Cell_State = torch.zeros(input.size()[0], self.hidden_size, input.size()[2], input.size()[3]).cuda()
Hidden_State_List = []
for timestep in range(input.size()[1]):
Hidden_State, Cell_State = self.ConvLSTMCell(input[:,timestep,:,:,:], Hidden_State, Cell_State)
Hidden_State_List.append(Hidden_State)
return torch.stack(Hidden_State_List, dim=1), Hidden_State, Cell_State
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class SegmentationModel(nn.Module):
def __init__(self):
super(SegmentationModel, self).__init__()
self.convlstm_layer = ConvLSTMLayer(512, 512)
self.conv_block1 = ConvBlock(512, 256)
self.conv_block2 = ConvBlock(256, 128)
self.classification = nn.Sequential(
nn.Conv2d(128, 2, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(2),
nn.Softmax(dim=1)
)
def forward(self, x):
x, _, _ = self.convlstm_layer(x)
x = self.conv_block1(x)
x = self.conv_block2(x)
x = self.classification(x)
return x
```
这是一个简单的分割模型,由ConvLSTMLayer和两个ConvBlock组成,输入5帧大小为512 x W x H的数据,输出大小为2 x W x H的分割结果。其中ConvLSTMLayer是一个5帧ConvLSTM层,用于学习时序信息。ConvBlock是一个包含卷积和BatchNorm的卷积操作块,用于提取特征。分类层使用1x1卷积进行2分类,并使用Softmax进行归一化。
阅读全文