from pyspark.conf import SparkConf from pyspark.sql.session import SparkSession from pyspark import SparkContext from pyspark.sql.types import Row if __name__ == "__main__": sc = SparkContext("local","Simple App") peopleRDD = sc.textFile("file:///usr/local/spark/employee.txt") rowRDD = peopleRDD.map(lambda line : line.split(",")).map(lambda attributes : Row(int(attributes[0]),attributes[1],int(attributes[2]))).toDF() rowRDD.createOrReplaceTempView("employee") personsDF = spark.sql("select * from employee") personsDF.rdd.map(lambda t : "id:"+str(t[0])+","+"Name:"+t[1]+","+"age:"+str(t[2])).foreach(print)

时间: 2024-03-30 17:33:43 浏览: 14
这段代码的作用是读取一个文本文件,将其转化为DataFrame,并查询该DataFrame中的数据并打印输出。 首先,使用SparkConf配置一个SparkContext对象,指定运行模式为local(本地模式),设置应用程序名为Simple App。然后,使用SparkContext对象读取文件内容,返回一个RDD对象,表示分布式的、只读的数据集合。接着,通过map操作将每一行文本转化为一个元组,再通过Row对象封装为一个Row对象,最后使用toDF()方法将RDD对象转化为DataFrame对象,并且将其注册为一个临时表。然后,使用SparkSession对象执行SQL查询语句"select * from employee",返回一个DataFrame对象。最后,使用rdd属性将DataFrame对象转化为RDD对象,并通过map操作将每一条记录转化为一个字符串,最后使用foreach操作打印输出。
相关问题

from pyspark.conf import SparkConf from pyspark.sql.session import SparkSession from pyspark import SparkContext from pyspark.sql.types import Row if __name__ == "__main__": sc = SparkContext("local","Simple App") peopleRDD = sc.textFile("file:///usr/loca

这是一段 PySpark 的代码,用于读取本地文件系统中的数据并将其转换为 RDD 对象。具体来说,代码中使用了 SparkConf 和 SparkSession 对象来创建 SparkContext,然后使用 SparkContext 对象读取本地文件系统中的数据,将其转换为 RDD 对象并进行处理。 首先,代码中使用 SparkConf 对象创建了一个 SparkConf 配置对象,用于配置 Spark 应用程序的运行参数。其中,"local" 表示在本地模式下运行 Spark 应用程序。然后,使用 SparkSession 对象创建了一个 SparkContext 对象,该对象用于与 Spark 集群进行通信,并启动 Spark 应用程序。需要注意的是,SparkSession 对象通常是在 PySpark 2.0 之后引入的,用于替代旧版的 SparkContext 对象。 接着,代码中使用了 SparkContext 对象的 textFile 方法读取了本地文件系统中的数据,并将其转换为 RDD 对象。在这里,我们将文件的路径作为参数传递给 textFile 方法。需要注意的是,文件路径必须是本地文件系统中的路径,如果要读取 HDFS 文件系统中的数据,则需要使用 hdfs:// 协议。 最后,代码中使用了 map 和 Row 对象对 RDD 中的每个元素进行转换。具体来说,我们使用 map 方法对 RDD 中的每个元素进行转换,将其转换为一个 Row 对象。在这里,我们假设数据文件中每一行都包含两个字段,使用 split 方法对每一行进行分割,并将分割结果转换为一个 Row 对象。最终,将转换后的 RDD 对象保存到 peopleRDD 变量中。

from pyspark import sparkconf ,sparkcontext

`from pyspark import SparkConf, SparkContext` 是导入 PySpark 中的两个重要模块,用于配置和创建 Spark 应用程序的上下文。 `SparkConf` 是 Spark 应用程序的配置类,可以用于设置应用程序的各种属性,如应用程序名称、运行模式、资源分配等。通过创建 `SparkConf` 对象,可以对 Spark 应用程序进行自定义配置。 `SparkContext` 是 Spark 应用程序的主要入口点,用于与 Spark 集群进行通信并创建 RDD(弹性分布式数据集)。通过创建 `SparkContext` 对象,可以初始化 Spark 应用程序并与集群进行交互。 以下是一个简单的示例代码,展示了如何使用 `SparkConf` 和 `SparkContext`: ```python from pyspark import SparkConf, SparkContext # 创建 SparkConf 对象 conf = SparkConf().setAppName("MySparkApp").setMaster("local") # 创建 SparkContext 对象 sc = SparkContext(conf=conf) # 在 Spark 上执行一些操作 data = [1, 2, 3, 4, 5] rdd = sc.parallelize(data) result = rdd.map(lambda x: x * 2).collect() # 打印结果 print(result) # 关闭 SparkContext sc.stop() ```

相关推荐

最新推荐

recommend-type

详谈redis优化配置和redis.conf说明(推荐)

下面小编就为大家带来一篇详谈redis优化配置和redis.conf说明(推荐)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

Nginx配置文件(nginx.conf)配置详解(总结)

本篇文章主要介绍了Nginx配置文件(nginx.conf)配置详解,这对初学者有一定的参考价值,有兴趣的可以了解一下。
recommend-type

比较完整的Nginx配置文件nginx.conf常用参数中文详解

主要介绍了比较完整的Nginx配置文件nginx.conf常用参数中文详解,需要的朋友可以参考下
recommend-type

解决Cent0S 6.7直接在/etc/resolv.conf文件下修改DNS地址重启不生效问题

主要介绍了解决Cent0S 6.7直接在/etc/resolv.conf文件下修改DNS地址重启不生效问题 ,需要的朋友可以参考下
recommend-type

基于PHP YAF的CMS系统.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

CIC Compiler v4.0 LogiCORE IP Product Guide

CIC Compiler v4.0 LogiCORE IP Product Guide是Xilinx Vivado Design Suite的一部分,专注于Vivado工具中的CIC(Cascaded Integrator-Comb滤波器)逻辑内核的设计、实现和调试。这份指南涵盖了从设计流程概述、产品规格、核心设计指导到实际设计步骤的详细内容。 1. **产品概述**: - CIC Compiler v4.0是一款针对FPGA设计的专业IP核,用于实现连续积分-组合(CIC)滤波器,常用于信号处理应用中的滤波、下采样和频率变换等任务。 - Navigating Content by Design Process部分引导用户按照设计流程的顺序来理解和操作IP核。 2. **产品规格**: - 该指南提供了Port Descriptions章节,详述了IP核与外设之间的接口,包括输入输出数据流以及可能的控制信号,这对于接口配置至关重要。 3. **设计流程**: - General Design Guidelines强调了在使用CIC Compiler时的基本原则,如选择合适的滤波器阶数、确定时钟配置和复位策略。 - Clocking和Resets章节讨论了时钟管理以及确保系统稳定性的关键性复位机制。 - Protocol Description部分介绍了IP核与其他模块如何通过协议进行通信,以确保正确的数据传输。 4. **设计流程步骤**: - Customizing and Generating the Core讲述了如何定制CIC Compiler的参数,以及如何将其集成到Vivado Design Suite的设计流程中。 - Constraining the Core部分涉及如何在设计约束文件中正确设置IP核的行为,以满足具体的应用需求。 - Simulation、Synthesis and Implementation章节详细介绍了使用Vivado工具进行功能仿真、逻辑综合和实施的过程。 5. **测试与升级**: - Test Bench部分提供了一个演示性的测试平台,帮助用户验证IP核的功能。 - Migrating to the Vivado Design Suite和Upgrading in the Vivado Design Suite指导用户如何在新版本的Vivado工具中更新和迁移CIC Compiler IP。 6. **支持与资源**: - Documentation Navigator and Design Hubs链接了更多Xilinx官方文档和社区资源,便于用户查找更多信息和解决问题。 - Revision History记录了IP核的版本变化和更新历史,确保用户了解最新的改进和兼容性信息。 7. **法律责任**: - 重要Legal Notices部分包含了版权声明、许可条款和其他法律注意事项,确保用户在使用过程中遵循相关规定。 CIC Compiler v4.0 LogiCORE IP Product Guide是FPGA开发人员在使用Vivado工具设计CIC滤波器时的重要参考资料,提供了完整的IP核设计流程、功能细节及技术支持路径。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例

![MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例](https://img-blog.csdnimg.cn/20200302213423127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDEzMjAzNQ==,size_16,color_FFFFFF,t_70) # 1. 矩阵奇异值分解(SVD)简介** 矩阵奇异值分解(SVD)是一种强大的线性代数技术,用于将矩阵分解为三个
recommend-type

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_0); HAL_Delay(200);是什么意思

这段代码是针对STM32F4xx系列的GPIO库函数,用于控制GPIOC的0号引脚的电平状态。具体来说,HAL_GPIO_TogglePin函数用于翻转GPIO引脚的电平状态,即如果该引脚原来是高电平,则变为低电平,反之亦然。而HAL_Delay函数则是用于延时200毫秒。因此,这段代码的作用是每200毫秒翻转一次GPIOC的0号引脚的电平状态。
recommend-type

G989.pdf

"这篇文档是关于ITU-T G.989.3标准,详细规定了40千兆位无源光网络(NG-PON2)的传输汇聚层规范,适用于住宅、商业、移动回程等多种应用场景的光接入网络。NG-PON2系统采用多波长技术,具有高度的容量扩展性,可适应未来100Gbit/s或更高的带宽需求。" 本文档主要涵盖了以下几个关键知识点: 1. **无源光网络(PON)技术**:无源光网络是一种光纤接入技术,其中光分配网络不包含任何需要电源的有源电子设备,从而降低了维护成本和能耗。40G NG-PON2是PON技术的一个重要发展,显著提升了带宽能力。 2. **40千兆位能力**:G.989.3标准定义的40G NG-PON2系统提供了40Gbps的传输速率,为用户提供超高速的数据传输服务,满足高带宽需求的应用,如高清视频流、云服务和大规模企业网络。 3. **多波长信道**:NG-PON2支持多个独立的波长信道,每个信道可以承载不同的服务,提高了频谱效率和网络利用率。这种多波长技术允许在同一个光纤上同时传输多个数据流,显著增加了系统的总容量。 4. **时分和波分复用(TWDM)**:TWDM允许在不同时间间隔内分配不同波长,为每个用户分配专用的时隙,从而实现多个用户共享同一光纤资源的同时传输。 5. **点对点波分复用(WDMPtP)**:与TWDM相比,WDMPtP提供了一种更直接的波长分配方式,每个波长直接连接到特定的用户或设备,减少了信道之间的干扰,增强了网络性能和稳定性。 6. **容量扩展性**:NG-PON2设计时考虑了未来的容量需求,系统能够灵活地增加波长数量或提高每个波长的速率,以适应不断增长的带宽需求,例如提升至100Gbit/s或更高。 7. **应用场景**:40G NG-PON2不仅用于住宅宽带服务,还广泛应用于商业环境中的数据中心互联、企业网络以及移动通信基站的回传,为各种业务提供了高性能的接入解决方案。 8. **ITU-T标准**:作为国际电信联盟电信标准化部门(ITU-T)的一部分,G.989.3建议书为全球的电信运营商和设备制造商提供了一套统一的技术规范,确保不同厂商的产品和服务之间的兼容性和互操作性。 9. **光接入网络**:G.989.3标准是接入网络技术的一个重要组成部分,它与光纤到户(FTTH)、光纤到楼(FTTB)等光接入方案相结合,构建了高效、可靠的宽带接入基础设施。 ITU-T G.989.3标准详细规定了40G NG-PON2系统的传输汇聚层,为现代高速网络接入提供了强大的技术支持,推动了光通信技术的持续进步。