def __init__(self, parameters): """ particle swarm optimization parameter: a list type, like [NGEN, pop_size, var_num_min, var_num_max] """ # 初始化 self.NGEN = parameters[0] # 迭代的代数 self.pop_size = parameters[1] # 种群大小 self.var_num = len(parameters[2]) # 变量个数 self.bound = [] # 变量的约束范围 self.bound.append(parameters[2]) self.bound.append(parameters[3]) self.pop_x = np.zeros((self.pop_size, self.var_num)) # 所有粒子的位置 self.pop_v = np.zeros((self.pop_size, self.var_num)) # 所有粒子的速度 self.p_best = np.zeros((self.pop_size, self.var_num)) # 每个粒子最优的位置 self.g_best = np.zeros((1, self.var_num)) # 全局最优的位置 # 初始化第0代初始全局最优解 temp = -1 for i in range(self.pop_size): for j in range(self.var_num): self.pop_x[i][j] = random.uniform(self.bound[0][j], self.bound[1][j]) self.pop_v[i][j] = random.uniform(0, 1) self.p_best[i] = self.pop_x[i] # 储存最优的个体 fit = self.fitness(self.p_best[i]) if fit > temp: self.g_best = self.p_best[i] temp = fit

时间: 2024-02-16 15:28:05 浏览: 33
这段代码实现了粒子群优化算法(PSO),用于优化一个目标函数的最优解。 首先,在 `__init__()` 方法中,将输入参数 `parameters` 解析为迭代的代数 `NGEN`、种群大小 `pop_size`、变量个数 `var_num` 和变量的约束范围 `bound`,并初始化各种变量的数组。 然后,在初始化第0代的所有粒子的位置和速度时,使用 `random.uniform()` 函数随机生成一个在变量的约束范围内的位置和速度。其中,`self.bound[0][j]` 和 `self.bound[1][j]` 分别表示第 j 个变量的下限和上限。 接着,将每个粒子的位置赋值给 `self.p_best[i]`,表示该粒子目前的最优解,将其评估后与全局最优解 `self.g_best` 进行比较,并更新全局最优解。 在这个过程中,目标函数的优化问题是通过调用 `self.fitness()` 方法来计算粒子的适应度值来解决的。这个方法应该在类的其他部分中进行定义。 需要注意的是,这段代码中的 `random` 是 Python 中的内置模块,用于生成伪随机数。
相关问题

class PSO: def __init__(self, parameters): """ particle swarm optimization parameter: a list type, like [NGEN, pop_size, var_num_min, var_num_max] """ # 初始化 self.NGEN = parameters[0] # 迭代的代数 self.pop_size = parameters[1] # 种群大小 self.var_num = len(parameters[2]) # 变量个数 self.bound = [] # 变量的约束范围 self.bound.append(parameters[2]) self.bound.append(parameters[3]) self.pop_x = np.zeros((self.pop_size, self.var_num)) # 所有粒子的位置 self.pop_v = np.zeros((self.pop_size, self.var_num)) # 所有粒子的速度 self.p_best = np.zeros((self.pop_size, self.var_num)) # 每个粒子最优的位置 self.g_best = np.zeros((1, self.var_num)) # 全局最优的位置

这段代码实现了一个粒子群优化算法(Particle Swarm Optimization,PSO)的类。在初始化函数中,首先解析传入的参数,包括迭代的代数NGEN、种群大小pop_size、变量的个数var_num以及变量的约束范围。然后,声明了一个bound列表,并向其中添加了变量的约束范围。接着,声明了一些用于存储粒子位置、速度、最优位置的数组,包括pop_x、pop_v、p_best和g_best。其中pop_x是一个大小为(pop_size, var_num)的二维数组,用于存储所有粒子的位置;pop_v是一个大小为(pop_size, var_num)的二维数组,用于存储所有粒子的速度;p_best是一个大小为(pop_size, var_num)的二维数组,用于存储每个粒子的最优位置;g_best是一个大小为(1, var_num)的二维数组,用于存储全局最优的位置。这些数组的值在算法迭代过程中会被不断更新。

解释swarm(1,swarm_size) = Particle();

这行代码的作用是在一个名为swarm的二维数组中创建一个新的粒子对象,并将其存储在第一行和第swarm_size列的位置上。 具体来说,Particle()表示创建一个新的粒子对象,而swarm(1,swarm_size)表示将其存储在第一行和第swarm_size列的位置上。此处使用了MATLAB中的面向对象编程方式,即先创建一个类(这里是Particle类),然后用类来创建对象(这里是创建一个新的粒子对象)。在这个例子中,swarm是一个二维数组,每个元素都存储一个Particle对象。 这行代码的作用是初始化一个粒子对象,并将其存储在swarm数组中。可以用类似的方式在数组中创建多个粒子对象。

相关推荐

class PSO_VRP: def __init__(self, num_particles, num_iterations, num_customers, max_capacity, max_distance, distances, demands): self.num_particles = num_particles self.num_iterations = num_iterations self.num_customers = num_customers self.max_capacity = max_capacity self.max_distance = max_distance self.distances = distances self.demands = demands self.global_best_fitness = float('inf') self.global_best_position = [0] * num_customers self.particles = [] def initialize_particles(self): for _ in range(self.num_particles): particle = Particle(self.num_customers, self.max_capacity, self.max_distance) self.particles.append(particle) def update_particles(self): for particle in self.particles: for i in range(len(particle.position)): r1 = random.random() r2 = random.random() particle.velocity[i] = 0.5 * particle.velocity[i] + 2 * r1 * (particle.best_position[i] - particle.position[i]) + 2 * r2 * (self.global_best_position[i] - particle.position[i]) particle.velocity[i] = int(particle.velocity[i]) if particle.velocity[i] < 0: particle.velocity[i] = 0 elif particle.velocity[i] > self.num_customers - 1: particle.velocity[i] = self.num_customers - 1 particle.position = [(particle.position[i] + particle.velocity[i]) % (self.num_customers + 1) for i in range(len(particle.position))] def update_global_best(self): for particle in self.particles: if particle.best_fitness < self.global_best_fitness: self.global_best_fitness = particle.best_fitness self.global_best_position = particle.best_position.copy() def solve(self): self.initialize_particles() for _ in range(self.num_iterations): for particle in self.particles: particle.evaluate_fitness(self.distances, self.demands) self.update_global_best() self.update_particles() return self.global_best_position, self.global_best_fitness添加注释

最新推荐

recommend-type

Particle Swarm Optimization最经典文章

A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is ...
recommend-type

群粒子优化(Particle Swarm Optimization,PSO)算法介绍

本课件详细介绍了群粒子优化(Particle Swarm Optimization,PSO)算法的来源,基本模型,算法演化过程及其应用领域。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、