import pandas as pd import matplotlib.pyplot as plt import matplotlib font = {'family' : 'MicroSoft YaHei','weight': 'bold',"size":12} matplotlib.rc("font",**font) df=pd.read_csv('buff.csv') print(df.info()) print(df.head(5)) data=df[pd.notnull(df['价钱'])] new_jiaqian=df['价钱'].str.replace('¥', '') print(new_jiaqian)以名称为分组索引对价钱进行统计
时间: 2023-08-22 12:04:28 浏览: 146
您可以使用`groupby`函数对`df`数据集进行分组,并对每个组的`价钱`列进行统计。具体代码如下:
```python
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
font = {'family' : 'MicroSoft YaHei','weight': 'bold',"size":12}
matplotlib.rc("font",**font)
df = pd.read_csv('buff.csv')
print(df.info())
print(df.head(5))
# 去除缺失值
data = df[pd.notnull(df['价钱'])]
# 去除价格中的人民币符号
new_jiaqian = data['价钱'].str.replace('¥', '').astype(float)
# 以名称为分组索引对价钱进行统计
grouped = new_jiaqian.groupby(data['名称']).sum()
# 打印结果
print(grouped)
```
上述代码会输出每个商品名称对应的价格总和。如果您需要更具体的统计结果或者可视化,请提供更多上下文信息,我可以为您提供更具体的帮助。
相关问题
使用jupyter进行数据处理阶段的代码如下:代码1import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set(palette="summer",font='Microsoft YaHei',font_scale=1.2) from warnings import filterwarnings filterwarnings('ignore')
这段代码主要是导入需要用到的库,并设置一些常用的绘图参数。具体来说,代码中:
- `import pandas as pd`:导入 Pandas 库,用于数据处理和分析;
- `import numpy as np`:导入 NumPy 库,用于科学计算;
- `import matplotlib.pyplot as plt`:导入 Matplotlib 库中的 pyplot 模块,用于绘图;
- `import seaborn as sns`:导入 Seaborn 库,用于数据可视化;
- `%matplotlib inline`:Jupyter Notebook 中的魔法命令,用于在 Notebook 中显示 Matplotlib 图表;
- `sns.set(palette="summer",font='Microsoft YaHei',font_scale=1.2)`:设置 Seaborn 的绘图参数,包括颜色调色板、字体和字号;
- `from warnings import filterwarnings filterwarnings('ignore')`:忽略警告信息,以便更清楚地看到输出结果。
这些库和参数在数据处理和分析中非常常用,可以方便我们进行数据清洗、可视化等操作。
import numpy as np import pandas import pandas as pd import matplotlib from sklearn import naive_bayes from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import normalize from sklearn.preprocessing import Binarizer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix matplotlib.rc("font", family='Microsoft YaHei') data=pd.read_csv(r'D:\杂货铺\机器学习\银行数据集.csv',header=None)
这段代码导入了一系列的Python库,包括NumPy、Pandas、Matplotlib、scikit-learn等。其中,NumPy是Python科学计算的核心库,Pandas是数据处理的重要库,Matplotlib是绘图库,scikit-learn是机器学习库。接下来,使用Pandas读取一个CSV文件,该文件路径为D:\杂货铺\机器学习\银行数据集.csv,文件没有列名,所以header参数设置为None。
阅读全文
相关推荐
















