用深度学习写一个pytorch框架下的可见光和红外图像融合的代码
时间: 2023-09-19 10:05:03 浏览: 103
这里提供一个基于卷积神经网络的可见光和红外图像融合的代码,使用PyTorch框架实现。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import cv2
```
然后,我们定义一个卷积神经网络模型:
```python
class FusionNet(nn.Module):
def __init__(self):
super(FusionNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv6 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv8 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv10 = nn.Conv2d(512, 1024, kernel_size=3, padding=1)
self.conv11 = nn.Conv2d(1024, 1024, kernel_size=3, padding=1)
self.upconv1 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.upconv2 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.upconv3 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv4 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv5 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)
self.finalconv = nn.Conv2d(32, 3, kernel_size=3, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
x1 = self.relu(self.conv1(x))
x2 = self.relu(self.conv2(x1))
x3 = self.relu(self.conv3(x2))
x4 = self.relu(self.conv4(x3))
x5 = self.relu(self.conv5(x4))
x6 = self.relu(self.conv6(x5))
x7 = self.relu(self.conv7(x6))
x8 = self.relu(self.conv8(x7))
x9 = self.relu(self.conv9(x8))
x10 = self.relu(self.conv10(x9))
x11 = self.relu(self.conv11(x10))
y = self.relu(self.upconv1(x11))
y = torch.cat((y, x9), dim=1)
y = self.relu(self.upconv2(y))
y = torch.cat((y, x7), dim=1)
y = self.relu(self.upconv3(y))
y = torch.cat((y, x5), dim=1)
y = self.relu(self.upconv4(y))
y = torch.cat((y, x3), dim=1)
y = self.relu(self.upconv5(y))
y = torch.cat((y, x1), dim=1)
y = self.finalconv(y)
return y
```
该模型包括11个卷积层和5个反卷积层,其中前10个卷积层和5个反卷积层用于特征提取和上采样,最后一个卷积层用于输出融合后的图像。我们使用ReLU作为激活函数。
接下来,我们定义训练和测试函数:
```python
def train(model, train_loader, criterion, optimizer, device):
model.train()
train_loss = 0
for batch_idx, (visible, infrared, target) in enumerate(train_loader):
visible, infrared, target = visible.to(device), infrared.to(device), target.to(device)
optimizer.zero_grad()
output = model(torch.cat((visible, infrared), dim=1))
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
return train_loss
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (visible, infrared, target) in enumerate(test_loader):
visible, infrared, target = visible.to(device), infrared.to(device), target.to(device)
output = model(torch.cat((visible, infrared), dim=1))
loss = criterion(output, target)
test_loss += loss.item()
test_loss /= len(test_loader)
return test_loss
```
在训练过程中,我们需要定义损失函数和优化器。这里我们使用均方误差作为损失函数,使用Adam作为优化器:
```python
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
最后,我们训练模型并保存结果:
```python
# 训练模型
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
test_loss = test(model, test_loader, criterion, device)
print('Epoch: {} Train Loss: {:.6f} Test Loss: {:.6f}'.format(epoch+1, train_loss, test_loss))
# 保存模型
torch.save(model.state_dict(), 'fusion_model.pth')
```
完整代码如下:
阅读全文