: cannot import name 'plot_confusion_matrix' from 'sklearn.metrics'这个错误怎么解决
时间: 2023-12-19 14:04:44 浏览: 459
这个错误可能是因为您的 scikit-learn 版本太旧,缺少了该函数的实现。您可以尝试更新 scikit-learn 到最新版本来解决这个问题。
您可以使用以下命令来更新 scikit-learn:
```
pip install --upgrade scikit-learn
```
如果您已经使用了上述命令更新了 scikit-learn,但仍然遇到该错误,请检查您的代码中是否有其他导入错误或名称冲突。您还可以尝试使用以下命令来重新安装 scikit-learn:
```
pip uninstall scikit-learn
pip install scikit-learn
```
如果上述方法仍然无法解决问题,请尝试使用其他版本的 scikit-learn 或联系 scikit-learn 社区获得更好的支持。
相关问题
cannot import name plot_confusion_matrix from sklearn.metrics
The error "cannot import name plot_confusion_matrix from sklearn.metrics" usually occurs when the version of scikit-learn you are using is outdated and does not support the plot_confusion_matrix function. This function was introduced in version 0.22, so you need to make sure you are using at least that version.
You can check the version of scikit-learn you are using with the following code:
```
import sklearn
print(sklearn.__version__)
```
If your version is lower than 0.22, you can upgrade it by running the following command in your terminal:
```
pip install --upgrade scikit-learn
```
Once you have upgraded scikit-learn, you should be able to import the plot_confusion_matrix function without any issues.
ImportError: cannot import name 'plot_confusion_matrix' from 'sklearn.metrics'怎么解决
这个错误可能是因为你的 scikit-learn 版本过低,没有包含 plot_confusion_matrix 函数。你可以尝试更新 scikit-learn 到最新版本,或者使用以下代码导入 plot_confusion_matrix 函数:
```
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
```
这段代码实现了与 scikit-learn 中的 plot_confusion_matrix 函数相同的功能,你可以在需要使用该函数时调用它。
阅读全文