2、简述阻塞、饥饿、死锁的区别。

时间: 2023-07-10 11:30:48 浏览: 302
阻塞、饥饿和死锁都是多道程序设计中的经典问题,它们分别代表了不同的状态和情况。 1. 阻塞 阻塞指的是一个进程因为等待某个事件而被暂时挂起,无法执行。在操作系统中,进程可能因为等待系统资源或者等待其他进程的某些操作而进入阻塞状态。在阻塞状态下,进程会被移动到等待队列中,直到满足了其等待的条件才能继续执行。 2. 饥饿 饥饿指的是一个进程长时间无法获取所需的资源或者服务,无法得到满足。在操作系统中,如果某个进程因为竞争资源失败而无法执行,或者优先级过低而无法获得CPU时间片,那么就会出现饥饿现象。如果一个进程一直处于饥饿状态,那么它可能永远无法完成自己的任务。 3. 死锁 死锁指的是两个或多个进程因为相互等待对方所持有的资源而陷入无限等待的状态。在死锁状态下,进程无法继续执行,也无法释放自己所持有的资源,从而导致系统无法正常运行。死锁的产生可能是由于资源的竞争、进程的交互等原因。 综上所述,阻塞、饥饿和死锁都是多道程序设计中的问题,它们分别代表了不同的状态和情况。阻塞是暂时的等待状态,饥饿是无法获得资源或者服务的状态,而死锁则是两个或多个进程相互等待对方持有的资源而陷入无限等待的状态。
相关问题

一、(7分)简述多级反馈队列,并给出其基本规则。 二、(6 分)简述受限直接访问,并给出通用的实现技术。 三、(7 分)假设系统中有四个相同类型的资源被三个进程共享。每个进程最多需要两个 资源。简述什么是死锁,并证明这个系统不会死锁。 四、(10分)某进程调度程序采用基于优先数(priority)的调度策略,即选择优先数最小的进 程运行,进程创建时由用户指定一个nice作为静态优先数。 为了动态调整优先数,引入 运行时间cpuTime和等待时间wait Time,初值均为0。进程处于执行态时,cpuTime 定 时加1,且waitTime置0;进程处于就绪态时,cpuTime 置0, waitTime 定时加1。请回 答下列问题。 (1)若调度程序只将nice的值作为进程的优先数,即priority=nice,是否会出现饥饿现象, 为什么? (2)使用nice、cpuTime和waitTime设计一种动态优先数计算方法, 以避免产生饥饿现象, 并说明各变量的作用。

一、多级反馈队列是一种常见的进程调度算法,它将进程按照优先级分成多个队列,每个队列有自己的时间片大小,高优先级队列的时间片较短,低优先级队列的时间片较长。当进程到达系统时,先进入最高优先级队列,如果时间片用完了还未完成,则进入次高优先级队列,以此类推。基本规则如下: 1.高优先级的进程会优先执行,低优先级的进程会被推迟执行; 2.如果有多个进程在同一队列中等待执行,采用时间片轮转的方式调度; 3.如果一个进程在一个队列中占用的时间超过了它的时间片,它会被移到下一个更低优先级的队列,直到它完成为止。 二、受限直接访问是一种实现页面置换的方法,它通过将主存中的每个页面映射到一个固定的位置,使得页面调度算法可以直接访问页面的位置,从而提高内存管理的效率。通用的实现技术包括: 1.建立一个页表,将每个页面映射到一个唯一的物理地址; 2.使用一个页表寄存器来存储当前进程的页表基地址; 3.使用MMU(内存管理单元)来实现虚拟地址到物理地址的转换。 三、死锁是指多个进程互相等待资源,导致系统无法继续运行的一种状态。在本题中,每个进程最多需要两个资源,而系统中共有四个资源,因此不存在死锁的情况。即使所有进程都同时请求两个资源,也最多只能有两个进程同时分配到资源,另外一个进程会被阻塞等待资源释放。 四、 (1)调度程序只将nice的值作为进程的优先数,即priority=nice,会出现饥饿现象。因为优先数只与进程创建时指定的nice值有关,不能反映进程的运行状态和等待时间,优先数较低的进程可能永远无法被调度执行。 (2)使用nice、cpuTime和waitTime设计动态优先数计算方法可以避免饥饿现象。一种常见的方法是:priority = nice + 2 * cpuTime + waitTime。其中,nice表示进程创建时指定的优先数,cpuTime表示进程运行的时间,waitTime表示进程等待的时间。因为cpuTime和waitTime随着进程的运行而增加,所以优先数也会随着时间的推移而增加,保证了所有进程都能获得执行的机会。
阅读全文

相关推荐

最新推荐

recommend-type

通过Android trace文件分析死锁ANR实例过程

2. **死锁描述**:"PowerManagerService"线程在调用`ActivityManagerService.broadcastIntent()`方法时被阻塞,同时等待`<0x41a874a0>`对象的锁,而这个锁目前被"ServerThread"持有。另一方面,"Binder_B"线程(tid=...
recommend-type

PostgreSQL中关闭死锁进程的方法

在PostgreSQL数据库管理中,死锁是常见的问题之一,它发生在两个或更多事务相互等待对方释放资源而无法继续执行的情况。解决死锁是确保数据库高效运行的关键任务。本篇文章将详细探讨如何在PostgreSQL中识别并关闭...
recommend-type

SQL Server锁介绍及死锁原因

- **死锁检测和死锁图表**:SQL Server有一个内置的死锁检测算法,可以通过查看死锁图表(sys.dm_tran_deadlock_sessions动态管理视图)来分析死锁。 - **事务回滚**:当检测到死锁时,系统会选择一个受害者事务并...
recommend-type

java中常见的死锁以及解决方法代码

一个最简单的死锁案例是当一个线程永远地持有一个锁,并且其他线程都尝试获得这个锁时,那么它们将永远被阻塞。在线程 A 持有锁 L 并想获得锁 M 的同时,线程 B 持有锁 M 并尝试获得锁 L,那么这两个线程将永远地...
recommend-type

解决DB2死锁的一些资料整理

DB2死锁问题在数据库应用系统中是一种常见的性能瓶颈,特别是在新系统上线初期,由于测试不足和对DB2机制理解不深,可能会频繁出现。DB2死锁涉及到多个层面,包括系统参数配置、应用程序设计以及性能监控与维护。...
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。