python OpenCV 给出水平直线列表horizontal_lines以及垂直直线列表vertical_lines 判断是否存在 两条长度接近相等的水平直线 与两条长度接近相等的垂直直线 能否构成矩形 若可以构成 则筛选出面积最大的矩形 并画出
时间: 2024-06-08 16:09:38 浏览: 161
可以使用以下步骤进行实现:
1. 对水平直线和垂直直线进行长度排序,找到长度最接近的两条水平直线和垂直直线。
2. 对找到的两条水平直线和垂直直线进行交点计算,得到所有可能的矩形的四个顶点坐标。
3. 判断所有可能的矩形是否为合法矩形,即对角线长度是否相等,并且判断是否在图像范围内。
4. 计算所有合法矩形的面积,找到面积最大的矩形。
5. 在原图上用不同颜色的线条画出找到的矩形。
以下是代码实现:
```python
import cv2
import numpy as np
# 读取图像
img = cv2.imread('test.jpg')
# 将图像转为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用Canny边缘检测算法获取图像边缘
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# 使用Hough直线检测算法获取水平和垂直直线
lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
horizontal_lines = []
vertical_lines = []
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
if abs(b) < 0.1:
horizontal_lines.append((x0, y0))
elif abs(a) < 0.1:
vertical_lines.append((x0, y0))
# 对水平直线和垂直直线按长度排序
horizontal_lines = sorted(horizontal_lines, key=lambda x: x[1])
vertical_lines = sorted(vertical_lines, key=lambda x: x[0])
# 找到长度最接近的两条水平直线和垂直直线
min_diff = float('inf')
for i in range(len(horizontal_lines) - 1):
for j in range(i + 1, len(horizontal_lines)):
diff = abs(horizontal_lines[i][1] - horizontal_lines[j][1])
if diff < min_diff:
min_diff = diff
hline1 = horizontal_lines[i]
hline2 = horizontal_lines[j]
min_diff = float('inf')
for i in range(len(vertical_lines) - 1):
for j in range(i + 1, len(vertical_lines)):
diff = abs(vertical_lines[i][0] - vertical_lines[j][0])
if diff < min_diff:
min_diff = diff
vline1 = vertical_lines[i]
vline2 = vertical_lines[j]
# 计算所有可能的矩形的四个顶点坐标
p1 = np.cross([hline1[0], hline1[1], 1], [vline1[0], vline1[1], 1])
p2 = np.cross([hline1[0], hline1[1], 1], [vline2[0], vline2[1], 1])
p3 = np.cross([hline2[0], hline2[1], 1], [vline1[0], vline1[1], 1])
p4 = np.cross([hline2[0], hline2[1], 1], [vline2[0], vline2[1], 1])
# 判断所有可能的矩形是否为合法矩形
valid_rectangles = []
for p in [(p1, p2, p3, p4), (p1, p3, p2, p4), (p1, p4, p2, p3)]:
if abs(np.linalg.norm(p[0] - p[3]) - np.linalg.norm(p[1] - p[2])) < 10 and \
abs(np.linalg.norm(p[0] - p[1]) - np.linalg.norm(p[2] - p[3])) < 10 and \
all(0 <= p[i][j] <= img.shape[j - 1] for i in range(4) for j in range(1, 3)):
valid_rectangles.append(p)
# 计算所有合法矩形的面积,找到面积最大的矩形
max_area = 0
for p in valid_rectangles:
area = abs(np.cross(p[0] - p[2], p[1] - p[3]))
if area > max_area:
max_area = area
max_rectangle = p
# 在原图上画出找到的矩形
cv2.line(img, (int(max_rectangle[0][0] / max_rectangle[0][2]), int(max_rectangle[0][1] / max_rectangle[0][2])),
(int(max_rectangle[1][0] / max_rectangle[1][2]), int(max_rectangle[1][1] / max_rectangle[1][2])), (0, 0, 255), 2)
cv2.line(img, (int(max_rectangle[1][0] / max_rectangle[1][2]), int(max_rectangle[1][1] / max_rectangle[1][2])),
(int(max_rectangle[3][0] / max_rectangle[3][2]), int(max_rectangle[3][1] / max_rectangle[3][2])), (0, 0, 255), 2)
cv2.line(img, (int(max_rectangle[3][0] / max_rectangle[3][2]), int(max_rectangle[3][1] / max_rectangle[3][2])),
(int(max_rectangle[2][0] / max_rectangle[2][2]), int(max_rectangle[2][1] / max_rectangle[2][2])), (0, 0, 255), 2)
cv2.line(img, (int(max_rectangle[2][0] / max_rectangle[2][2]), int(max_rectangle[2][1] / max_rectangle[2][2])),
(int(max_rectangle[0][0] / max_rectangle[0][2]), int(max_rectangle[0][1] / max_rectangle[0][2])), (0, 0, 255), 2)
# 显示结果
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在运行以上代码之前,需要先准备一张测试图片,并将其命名为`test.jpg`,放在代码所在的文件夹中。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)