决策树id3算法matlab实现
时间: 2023-10-02 20:07:08 浏览: 110
决策树ID3算法的实现
4星 · 用户满意度95%
以下是使用MATLAB实现ID3算法的示例代码:
```matlab
% 定义训练数据集
data = [1 0 1 0 1;
1 0 1 1 1;
1 1 1 0 0;
0 0 1 0 1;
0 0 0 0 0;
0 1 1 0 0;
0 1 0 1 0;
0 1 0 1 1];
% 定义属性名称
attribute_names = {'Outlook', 'Temperature', 'Humidity', 'Windy'};
% 定义目标属性名称
target_attribute_name = 'PlayTennis';
% 调用ID3算法构建决策树
tree = id3(data, attribute_names, target_attribute_name);
% 定义测试数据集
test_data = [1 0 1 0;
1 0 1 1;
0 1 0 1];
% 对测试数据集进行分类
for i = 1:size(test_data, 1)
classification = classify(tree, attribute_names, test_data(i,:));
fprintf('Test data %d: %s\n', i, classification);
end
```
下面是ID3算法和分类函数的实现:
```matlab
function tree = id3(data, attribute_names, target_attribute_name)
% 获取目标属性的所有可能取值
target_attribute = data(:,end);
target_attribute_values = unique(target_attribute);
% 如果数据集中所有实例的目标属性取值相同,则返回单节点决策树
if numel(target_attribute_values) == 1
tree.op = '';
tree.kids = {};
tree.class = target_attribute_values(1);
return;
end
% 如果属性集为空,则返回单节点决策树,以数据集中出现最频繁的目标属性值作为该节点的类别
if size(data, 2) == 1
tree.op = '';
tree.kids = {};
tree.class = mode(target_attribute);
return;
end
% 计算每个属性的信息增益
[best_attribute_index, best_attribute_threshold] = choose_best_attribute(data);
best_attribute_name = attribute_names{best_attribute_index};
% 构建决策树
tree.op = best_attribute_name;
tree.threshold = best_attribute_threshold;
tree.kids = {};
% 根据最佳属性和其阈值将数据集分割成子集
subsets = split_data(data, best_attribute_index, best_attribute_threshold);
% 递归构建子树
for i = 1:numel(subsets)
subset = subsets{i};
if isempty(subset)
tree.kids{i} = struct('op', '', 'kids', {}, 'class', mode(target_attribute));
else
subtree = id3(subset, attribute_names, target_attribute_name);
tree.kids{i} = subtree;
end
end
end
function [best_attribute_index, best_attribute_threshold] = choose_best_attribute(data)
% 计算目标属性的熵
target_attribute = data(:,end);
target_attribute_entropy = entropy(target_attribute);
% 计算每个属性的信息增益
attributes = 1:size(data,2)-1;
information_gains = zeros(numel(attributes),1);
thresholds = zeros(numel(attributes), 1);
for i = 1:numel(attributes)
attribute_index = attributes(i);
attribute_values = data(:,attribute_index);
[threshold, information_gain] = choose_best_threshold(attribute_values, target_attribute);
information_gains(i) = information_gain;
thresholds(i) = threshold;
end
% 选择信息增益最大的属性
[best_information_gain, best_attribute_index] = max(information_gains);
best_attribute_threshold = thresholds(best_attribute_index);
% 如果没有最佳阈值,则取属性值的中位数作为阈值
if isnan(best_attribute_threshold)
best_attribute_values = data(:,best_attribute_index);
best_attribute_threshold = median(best_attribute_values);
end
end
function [threshold, information_gain] = choose_best_threshold(attribute_values, target_attribute)
% 对属性值进行排序
[sorted_attribute_values, indices] = sort(attribute_values);
sorted_target_attribute = target_attribute(indices);
% 选择最佳阈值
threshold = nan;
best_information_gain = -inf;
for i = 1:numel(sorted_attribute_values)-1
% 计算当前阈值下的信息增益
current_threshold = (sorted_attribute_values(i) + sorted_attribute_values(i+1)) / 2;
current_information_gain = information_gain(sorted_target_attribute, sorted_attribute_values, current_threshold);
% 如果当前信息增益比之前的更好,则更新最佳阈值和最佳信息增益
if current_information_gain > best_information_gain
threshold = current_threshold;
best_information_gain = current_information_gain;
end
end
information_gain = best_information_gain;
end
function subsets = split_data(data, attribute_index, threshold)
% 根据属性和阈值将数据集分割成子集
attribute_values = data(:,attribute_index);
left_subset_indices = attribute_values <= threshold;
right_subset_indices = attribute_values > threshold;
% 构建左右子集
left_subset = data(left_subset_indices,:);
right_subset = data(right_subset_indices,:);
subsets = {left_subset, right_subset};
end
function classification = classify(tree, attribute_names, instance)
% 遍历决策树,对实例进行分类
while ~isempty(tree.kids)
attribute_index = find(strcmp(attribute_names, tree.op));
attribute_value = instance(attribute_index);
if attribute_value <= tree.threshold
tree = tree.kids{1};
else
tree = tree.kids{2};
end
end
classification = tree.class;
end
function e = entropy(target_attribute)
% 计算目标属性的熵
p = histc(target_attribute, unique(target_attribute)) / numel(target_attribute);
p(p == 0) = [];
e = -sum(p .* log2(p));
end
function ig = information_gain(target_attribute, attribute_values, threshold)
% 计算信息增益
n = numel(target_attribute);
left_target_attribute = target_attribute(attribute_values <= threshold);
right_target_attribute = target_attribute(attribute_values > threshold);
left_entropy = entropy(left_target_attribute);
right_entropy = entropy(right_target_attribute);
p_left = numel(left_target_attribute) / n;
p_right = numel(right_target_attribute) / n;
ig = entropy(target_attribute) - p_left * left_entropy - p_right * right_entropy;
end
```
这个实现假设输入数据是一个矩阵,其中每行表示一个实例,每列表示一个属性,最后一列是目标属性。目标属性应该是二元的,即只有两个不同的取值。属性名称作为一个字符串向量传递,最后一个元素是目标属性名称。
阅读全文