给我一个基于openpose模型的用于检测坐姿的pytorch代码
时间: 2024-01-21 19:04:25 浏览: 87
以下是一个基于openpose模型的用于检测坐姿的pytorch代码,该代码使用pytorch实现,需要安装pytorch、opencv-python和OpenPose模型。
```python
import cv2
import torch
import numpy as np
# 加载OpenPose模型
net = cv2.dnn.readNetFromTensorflow("path/to/openpose.pb")
# 定义坐姿检测函数
def detect_pose(image):
# 图像预处理
input_blob = cv2.dnn.blobFromImage(image, 1.0 / 255, (368, 368), (0, 0, 0), swapRB=False, crop=False)
net.setInput(input_blob)
# 获取OpenPose输出
output = net.forward()
# 解析OpenPose输出
points = []
for i in range(18):
prob_map = output[0, i, :, :]
prob_map = cv2.resize(prob_map, (image.shape[1], image.shape[0]))
_, confidence, _, point = cv2.minMaxLoc(prob_map)
if confidence > 0.1:
points.append((int(point[0]), int(point[1])))
else:
points.append(None)
# 计算坐姿得分
score = 0
if points[8] is not None and points[11] is not None and points[1] is not None:
hip_height = points[8][1] + points[11][1] - points[1][1]
hip_width = abs(points[8][0] - points[11][0])
if hip_width > 0:
score = hip_height / hip_width
return score, points
# 测试坐姿检测函数
if __name__ == "__main__":
image = cv2.imread("path/to/image.jpg")
score, points = detect_pose(image)
print("坐姿得分:", score)
for i, point in enumerate(points):
if point is not None:
cv2.circle(image, point, 3, (0, 0, 255), -1)
cv2.imshow("image", image)
cv2.waitKey(0)
```
注意,上述代码中的OpenPose模型需要下载并放置在指定的路径中。你可以从OpenPose的官方网站下载预训练模型,也可以使用第三方提供的预训练模型。
阅读全文