使用MATLAB遗传算法将100项任务分给18个人,每个人可承担多项工作,使总工作时间最短的代码,并输出每个人的任务分配和遗传算法的收敛曲线结果
时间: 2024-02-27 17:54:10 浏览: 49
遗传算法 用matlab实现
好的,这是一个优化问题,我们可以使用遗传算法来解决。以下是MATLAB的代码实现:
```matlab
nTask = 100; % 任务数量
nPeople = 18; % 人数
taskTime = randi([1, 10], 1, nTask); % 随机生成任务时间
totalTime = sum(taskTime); % 总工作时间
% 遗传算法参数
populationSize = 50; % 种群大小
mutationRate = 0.01; % 变异率
tournamentSize = 10; % 锦标赛选择大小
eliteSize = 2; % 精英个体数量
generations = 100; % 迭代次数
% 初始化种群
population = zeros(populationSize, nTask);
for i = 1:populationSize
% 随机分配任务给人
for j = 1:nTask
population(i, j) = randi([1, nPeople]);
end
end
% 遗传算法迭代
fitnessHistory = zeros(generations, 1);
for generation = 1:generations
% 计算适应度
fitness = zeros(populationSize, 1);
for i = 1:populationSize
% 计算每个人的工作时间
peopleTime = zeros(nPeople, 1);
for j = 1:nTask
peopleTime(population(i, j)) = peopleTime(population(i, j)) + taskTime(j);
end
% 计算总工作时间
totalTimePopulation = max(peopleTime);
% 计算适应度
fitness(i) = totalTime - totalTimePopulation;
end
fitnessHistory(generation) = max(fitness);
% 选择精英个体
[~, eliteIndices] = maxk(fitness, eliteSize);
elite = population(eliteIndices, :);
% 选择父代个体
parents = zeros(populationSize - eliteSize, nTask);
for i = 1:populationSize - eliteSize
tournament = randi([1, populationSize], 1, tournamentSize);
[~, bestIndex] = max(fitness(tournament));
parents(i, :) = population(tournament(bestIndex), :);
end
% 交叉
offspring = zeros(size(parents));
for i = 1:size(parents, 1)
parent1 = parents(i, :);
parent2 = parents(mod(i, size(parents, 1)) + 1, :);
crossPoint = randi(nTask);
offspring(i, :) = [parent1(1:crossPoint), parent2(crossPoint+1:end)];
end
% 变异
for i = 1:size(offspring, 1)
for j = 1:nTask
if rand() < mutationRate
offspring(i, j) = randi([1, nPeople]);
end
end
end
% 更新种群
population = [elite; offspring];
end
% 输出结果
[~, bestIndex] = max(fitness);
bestIndividual = population(bestIndex, :);
peopleTask = cell(nPeople, 1);
for i = 1:nPeople
peopleTask{i} = find(bestIndividual == i);
end
disp(peopleTask);
plot(fitnessHistory);
```
这段代码首先生成了100个任务,每个任务需要的时间为1-10之间的随机数。然后使用遗传算法将这些任务分配给18个人,每个人可承担多项工作,使总工作时间最短。遗传算法的参数如下:
- 种群大小为50
- 变异率为0.01
- 锦标赛选择大小为10
- 精英个体数量为2
- 迭代次数为100
遗传算法迭代完成后,输出每个人的任务分配和遗传算法的收敛曲线结果。
注意:由于遗传算法的随机性,每次运行代码得到的结果可能不同。
阅读全文