如何用vits训练模型
时间: 2024-06-01 11:02:50 浏览: 162
ViT(Vision Transformer)是一种基于Transformer的视觉模型,它在图像分类、目标检测和图像分割等任务上取得了很好的性能。下面是一个简单的示例,展示如何使用PyTorch和Imagenet数据集训练一个ViT模型:
1.首先,需要安装 PyTorch 和 torchvision 库。可以使用以下命令安装:
```
pip install torch torchvision
```
2.下载并解压Imagnet数据集,可以从官网下载:http://www.image-net.org/
3.接下来,需要准备数据集。可以使用 torchvision.datasets.ImageFolder 类来加载数据集,并使用 torchvision.transforms 模块来对图像进行预处理和数据增强。
```python
import torchvision.datasets as datasets
import torchvision.transforms as transforms
train_dataset = datasets.ImageFolder(
'path/to/imagenet/train',
transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
)
val_dataset = datasets.ImageFolder(
'path/to/imagenet/val',
transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
)
```
4.定义模型
```python
import torch.nn as nn
from timm.models.vision_transformer import vit_base_patch16_224
model = vit_base_patch16_224(pretrained=False)
num_classes = 1000
model.head = nn.Linear(model.head.in_features, num_classes)
```
5.定义优化器和损失函数
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
6.开始训练模型
```python
from torch.utils.data import DataLoader
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
val_loss = 0.0
val_acc = 0.0
model.train()
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_dataset)
train_acc = train_acc / len(train_dataset)
model.eval()
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
val_acc += torch.sum(preds == labels.data)
val_loss = val_loss / len(val_dataset)
val_acc = val_acc / len(val_dataset)
print('Epoch: {}/{}'.format(epoch+1, num_epochs))
print('Training Loss: {:.4f}, Training Acc: {:.4f}'.format(train_loss, train_acc))
print('Validation Loss: {:.4f}, Validation Acc: {:.4f}'.format(val_loss, val_acc))
```
7.保存模型
```python
torch.save(model.state_dict(), 'path/to/save/model.pt')
```
这是一个简单的示例,可以根据自己的需求进行修改和扩展。
阅读全文