写一个基于模拟退火算法的HP格点模型蛋白质折叠问题求解的代码
时间: 2024-05-01 10:16:03 浏览: 112
以下是一个基于模拟退火算法的HP格点模型蛋白质折叠问题求解的 Python 代码:
```python
import random
import math
# 定义问题参数
protein_sequence = "HPPHPPHPPHPPHPPHPPHP"
lattice_size = 5
temperature = 100
cooling_rate = 0.95
min_temperature = 1
# 定义能量函数
def calculate_energy(protein_sequence, lattice_size):
energy = 0
for i in range(len(protein_sequence)):
x, y = get_coordinates(i, lattice_size)
neighbors = get_neighbors(x, y, lattice_size)
for neighbor in neighbors:
if neighbor < i:
if protein_sequence[i] == 'H' and protein_sequence[neighbor] == 'H':
energy -= 1
elif protein_sequence[i] == 'P' and protein_sequence[neighbor] == 'P':
energy += 0.5
return energy
# 定义辅助函数
def get_coordinates(index, lattice_size):
x = index % lattice_size
y = index // lattice_size
return x, y
def get_index(x, y, lattice_size):
return y * lattice_size + x
def get_neighbors(x, y, lattice_size):
neighbors = []
if x > 0:
neighbors.append(get_index(x-1, y, lattice_size))
if x < lattice_size-1:
neighbors.append(get_index(x+1, y, lattice_size))
if y > 0:
neighbors.append(get_index(x, y-1, lattice_size))
if y < lattice_size-1:
neighbors.append(get_index(x, y+1, lattice_size))
return neighbors
# 初始化蛋白质序列
current_sequence = protein_sequence
best_sequence = current_sequence
best_energy = calculate_energy(best_sequence, lattice_size)
# 迭代求解
while temperature > min_temperature:
# 随机选择一个氨基酸并翻转其状态
index = random.randint(0, len(current_sequence)-1)
current_state = current_sequence[index]
new_state = 'H' if current_state == 'P' else 'P'
new_sequence = current_sequence[:index] + new_state + current_sequence[index+1:]
# 计算新序列的能量差
current_energy = calculate_energy(current_sequence, lattice_size)
new_energy = calculate_energy(new_sequence, lattice_size)
delta_energy = new_energy - current_energy
# 根据 Metropolis 准则接受或拒绝新状态
if delta_energy < 0 or math.exp(-delta_energy/temperature) > random.random():
current_sequence = new_sequence
current_energy = new_energy
# 更新最优解
if current_energy < best_energy:
best_sequence = current_sequence
best_energy = current_energy
# 降温
temperature *= cooling_rate
# 输出结果
print("最优序列:", best_sequence)
print("最优能量:", best_energy)
```
在这个代码中,我们首先定义了问题的参数,包括蛋白质序列、晶格大小、初始温度、冷却速率和最低温度。然后定义了能量函数,用来计算蛋白质序列的能量。接下来定义了一些辅助函数,包括获取氨基酸在晶格中的坐标、获取邻居氨基酸的索引等。然后初始化蛋白质序列,并开始迭代求解。在每次迭代中,我们随机选择一个氨基酸并翻转其状态,然后计算新序列的能量差。根据 Metropolis 准则,我们接受或拒绝新状态,并更新最优解。最后降温,直到达到最低温度为止。最终输出最优序列和最优能量。
需要注意的是,这个代码只是一个简单的示例,实际上蛋白质折叠问题非常复杂,需要更加复杂的算法和优化方法来求解。
阅读全文