FastRCNN的python代码
时间: 2024-05-02 09:16:44 浏览: 196
以下是Fast R-CNN的Python代码,包括模型的定义、训练和测试:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
class FastRCNN(nn.Module):
def __init__(self, n_classes):
super(FastRCNN, self).__init__()
self.n_classes = n_classes
self.roi_pool = nn.AdaptiveMaxPool2d((7, 7))
self.fc1 = nn.Linear(7*7*512, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.cls_score = nn.Linear(4096, n_classes)
self.bbox_pred = nn.Linear(4096, n_classes*4)
def forward(self, conv_feats, rois):
rois = torch.from_numpy(rois).cuda()
roi_feats = self.roi_pool(conv_feats, rois)
x = roi_feats.view(-1, 7*7*512)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
cls_scores = self.cls_score(x)
bbox_preds = self.bbox_pred(x)
return cls_scores, bbox_preds
def smooth_l1_loss(bbox_preds, bbox_targets, bbox_inside_weights, bbox_outside_weights, sigma=1.0):
sigma_2 = sigma ** 2
box_diff = bbox_preds - bbox_targets
in_box_diff = bbox_inside_weights * box_diff
abs_in_box_diff = torch.abs(in_box_diff)
smoothL1_sign = (abs_in_box_diff < 1. / sigma_2).detach().float()
in_loss_box = torch.pow(in_box_diff, 2) * (sigma_2 / 2.) * smoothL1_sign \
+ (abs_in_box_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign)
out_loss_box = bbox_outside_weights * in_loss_box
loss_box = out_loss_box
return loss_box.mean()
def train(model, dataloader, optimizer, criterion_cls, criterion_bbox):
model.train()
running_loss = 0.0
for i, data in enumerate(dataloader):
img, gt_boxes, gt_labels = data
img = img.cuda()
gt_boxes = gt_boxes.cuda()
gt_labels = gt_labels.cuda()
optimizer.zero_grad()
conv_feats = model.convnet(img)
rois, roi_labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = \
model.proposal_layer(conv_feats, gt_boxes, gt_labels)
cls_scores, bbox_preds = model(conv_feats, rois)
cls_loss = criterion_cls(cls_scores, roi_labels)
bbox_loss = smooth_l1_loss(bbox_preds, bbox_targets, bbox_inside_weights, bbox_outside_weights)
loss = cls_loss + bbox_loss
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(dataloader)
def test(model, dataloader):
model.eval()
correct = 0
total = 0
for i, data in enumerate(dataloader):
img, gt_boxes, gt_labels = data
img = img.cuda()
gt_boxes = gt_boxes.cuda()
gt_labels = gt_labels.cuda()
conv_feats = model.convnet(img)
rois, roi_labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = \
model.proposal_layer(conv_feats, gt_boxes, gt_labels)
cls_scores, bbox_preds = model(conv_feats, rois)
_, predicted = torch.max(cls_scores.data, 1)
total += roi_labels.size(0)
correct += (predicted == roi_labels).sum().item()
return correct / total
```
这里使用了PyTorch框架实现了Fast R-CNN模型,并提供了训练和测试函数。其中,`FastRCNN`类定义了模型的结构,`smooth_l1_loss`函数是bbox回归的损失函数,`train`函数和`test`函数分别用于训练和测试模型。
阅读全文