x_train, x_validation, x_test = np.array(x_train), np.array(x_validation), np.array(x_test) x_train_Vx, x_train_SH, x_train_DV = np.split(x_train, 3, axis=2) x_validation_Vx, x_validation_SH, x_validation_DV = np.split(x_validation, 3, axis=2) x_test_Vx, x_test_SH, x_test_DV = np.split(x_test, 3, axis=2)
时间: 2023-10-09 12:07:37 浏览: 88
浅谈keras通过model.fit_generator训练模型(节省内存)
这段代码使用了`numpy`中的`np.array`和`np.split`函数,将`x_train`、`x_validation`和`x_test`分别划分为三个部分。
首先,将`x_train`、`x_validation`和`x_test`转换为`numpy`数组:
```
x_train, x_validation, x_test = np.array(x_train), np.array(x_validation), np.array(x_test)
```
然后,使用`np.split`函数将每个数组分成三个部分。`axis=2`表示在第三个维度上进行划分。
```
x_train_Vx, x_train_SH, x_train_DV = np.split(x_train, 3, axis=2)
x_validation_Vx, x_validation_SH, x_validation_DV = np.split(x_validation, 3, axis=2)
x_test_Vx, x_test_SH, x_test_DV = np.split(x_test, 3, axis=2)
```
这里将`x_train`、`x_validation`和`x_test`分别划分为三个部分,分别为`Vx`、`SH`和`DV`。所以最终会得到`x_train_Vx`、`x_train_SH`、`x_train_DV`、`x_validation_Vx`、`x_validation_SH`、`x_validation_DV`、`x_test_Vx`、`x_test_SH`和`x_test_DV`这九个变量。
阅读全文