% CDMA系统仿真 clear all; clc; % 初始化参数 N = 8; % 用户数 M = 4; % 节点数 L = 16; % 符号数 SNR = 10; % 信噪比 EbN0 = SNR + 10*log10(log2(M)/N); % 计算Eb/N0 h = randn(M, N) + j*randn(M, N); % 信道系数 % 生成随机数据 data = randi([0 M-1], N, L); % 生成码片序列 chip = hadamard(N); % 生成调制信号 mod_signal = qammod(data, M); % 将调制信号分配到码片上 tx_signal = zeros(M, L*N); for i = 1:N tx_signal(i,:) = repmat(chip(i,:), 1, L) .* repmat(mod_signal(i,:), 1, N); end % 添加高斯噪声 noise = randn(M, L*N) * sqrt(0.5 / (10^(EbN0/10))); rx_signal = tx_signal + noise; % 信道估计 est_h = zeros(M, N); for i = 1:N mod_chip = repmat(chip(i,:), 1, L); est_mod_signal = (rx_signal .* repmat(mod_chip, N, 1)) * sqrt(N/L); est_h(:,i) = est_mod_signal ./ mod_signal(i,:); end % 解调信号 demod_signal = zeros(N, L); for i = 1:N demod_signal(i,:) = qamdemod(rx_signal(i,:), M); end % 输出误码率 ber = sum(sum(demod_signal ~= data)) / (N*L)如何修改矩阵维度使得代码能正常运行

时间: 2024-02-23 22:57:59 浏览: 85
要解决这个问题,你需要将noise的维度与tx_signal的维度相匹配。在第19行的代码中,你可以使用reshape()函数来改变noise的维度,使其与tx_signal的维度相同。代码如下: ``` noise = reshape(noise, M, L*N); ``` 将这行代码添加到第19行的代码之后,就可以解决矩阵维度不一致的问题,使代码能够正常运行。
相关问题

% 清空变量 clear all; close all; clc; % 设置参数 N = 1000; % 发送符号数 M = 16; % 星座大小 SNR_dB = 0:2:20; % 信噪比范围 K = 1:4; % 中继数% 初始化计数器 BER = zeros(length(K),length(SNR_dB)); % 开始仿真 for k = 1:length(K) for i = 1:length(SNR_dB) % 生成发送符号 x = randi([0,M-1],1,N); % 进行调制 mod_x = qammod(x,M); % 计算噪声方差 SNR = 10^(SNR_dB(i)/10); sigma = sqrt(1/(2*SNR)); % 添加AWGN噪声 y = mod_x + sigma*(randn(1,N)+1i*randn(1,N)); % 初始化接收符号 r = zeros(1,N); % 进行中继传输 for j = 1:K(k) if j == 1 % 第一个中继节点接收发送符号 r = y; else % 其他中继节点接收上一个中继节点发送的符号 r = h.*r + sigma*(randn(1,N)+1i*randn(1,N)); end % 对接收符号进行解调 demod_r = qamdemod(r,M); % 对解调符号进行编码 en_r = qammod(demod_r,M); % 对编码后的符号进行发送 h = y./en_r; end % 对最终接收符号进行解调 demod_y = qamdemod(r,M); % 计算误码率 BER(k,i) = sum(x ~= demod_y)/N; end end% 绘图 figure; semilogy(SNR_dB,BER(1,:),'o-',SNR_dB,BER(2,:),'x-',SNR_dB,BER(3,:),'*-',SNR_dB,BER(4,:),'+-'); xlabel('SNR(dB)'); ylabel('BER'); legend('K=1','K=2','K=3','K=4'); grid on;分析代码和结果

这是一个基于QAM调制的中继传输系统的MATLAB仿真代码,其中包括了多个参数的设置,如发射符号数、星座大小、信噪比范围和中继数。在代码中,通过循环遍历不同的中继数和信噪比范围,对于每组参数设置,生成发送符号并进行调制,然后添加AWGN噪声模拟信道,最后进行中继传输并解调接收符号,计算误码率。 在结果的图像中,横轴是信噪比(dB),纵轴是误码率(BER),分别绘制了不同中继数下的BER随SNR变化的曲线,并通过图例进行区分。 需要注意的是,代码中使用了QAM调制和解调函数qammod和qamdemod,还使用了MATLAB的semilogy函数进行对数坐标系下的绘图。

详细分析程序:%%混合同余法 clear clc %% %初始化 A=65539; N=1200; x0=1; M=2147483647; C=1; for k=1:N y=A*x0+C; x1=mod(y,M); v1=x1/2147483647;%将x1中的数除以M得到小于1的随机数 v(:,k)=v1; x0=x1; v0=v1; end v2=v;%保存0-1随机数到v2 ave=mean(v) var=var(v) k1=k; save v; %% %绘图程序 k=1:k1; plot(k,v,'b'); xlabel('k');ylabel('v');title('(0-1)'); %% figure [num,val]=hist(v,10); num1=num/N;%频数转换成频率分布 hist(v,10); figure plot(val,num1,'b');

这段程序使用了混合同余法生成一组随机数,并进行了统计分析和绘图。下面是对程序的详细分析: 1. 清除工作空间和命令窗口中的变量和内容。 ```matlab clear clc ``` 2. 初始化一些参数和变量。 ```matlab A = 65539; % 常数 A N = 1200; % 序列的个数 x0 = 1; % 初始值 x0 M = 2147483647; % 常数 M C = 1; % 常数 C ``` 3. 使用 for 循环生成随机数序列。 ```matlab for k = 1:N y = A * x0 + C; % 计算 y 值 x1 = mod(y, M); % 对 y 取模得到 x1 v1 = x1 / 2147483647; % 计算 v1,将 x1 中的数除以 M 得到小于 1 的随机数 v(:, k) = v1; % 将 v1 存入数组 v 中 x0 = x1; % 更新 x0 的值为 x1,为下一次循环准备 v0 = v1; % 将 v1 存入变量 v0 中(这个变量好像没有被使用到) end v2 = v; % 将 0-1 随机数保存到 v2 中 ``` 4. 计算生成的随机数序列的平均值和方差,并将结果输出到命令窗口。 ```matlab ave = mean(v) % 计算平均值 var = var(v) % 计算方差 k1 = k % 将循环变量 k 的值保存到 k1 中(这个变量好像没有被使用到) save v % 将生成的随机数序列保存到文件 v 中 ``` 5. 绘制生成的随机数序列的图像。 ```matlab k = 1:k1; % 创建一个序列,用于横坐标 plot(k, v, 'b'); % 绘制图像,横坐标为 k,纵坐标为 v,线条颜色为蓝色 xlabel('k'); ylabel('v'); title('(0-1)'); % 添加横坐标、纵坐标和标题 ``` 6. 创建一个新的图形窗口,绘制生成的随机数序列的直方图。 ```matlab figure; [num, val] = hist(v, 10); % 计算 v 中每个值在 10 个区间内的频数 num1 = num / N; % 将频数转换为频率分布 hist(v, 10); % 绘制直方图 ``` 7. 创建另一个新的图形窗口,绘制生成的随机数序列的频率分布图。 ```matlab figure; plot(val, num1, 'b'); % 绘制频率分布图,横坐标为 val,纵坐标为 num1,线条颜色为蓝色 ``` 这样,程序就完成了生成随机数序列、统计分析和绘图的过程。
阅读全文

相关推荐

clc; clear all; numNodes = [10, 20, 30]; % 节点数量 packetSize = 1024; % 数据包大小 (bytes) transmissionRate = 10^7; % 传输速率 (bps) distance = 100; % 传输距离 (m) bandwidth = 10^9; % 网络带宽 (bps) slotTime = 9*10^-6; % 时隙时间 (s) maxBackoff = 7; % 重传次数上限 for i = 1:length(numNodes) N = numNodes(i); priority = 1:N; % 设置优先级 backoff = zeros(1,N); % 初始化退避时间 t = 0; % 初始化时间 successful = 0; % 初始化成功传输的数据包数量 collisions = 0; % 初始化碰撞的数据包数量 while successful < N % 直到所有数据包都传输成功 % 计算每个节点的发送时间和结束时间 startTime = t + (rand(1,N) .* backoff); % 发送时间 endTime = startTime + packetSize./transmissionRate + distance/transmissionRate; % 结束时间 % 找到发送时间最早的节点 [minTime, minIndex] = min(startTime); % 检查是否发生碰撞 if sum(startTime < minTime + packetSize/transmissionRate + 2*distance/transmissionRate) > 1 collisions = collisions + 1; % 重传 backoff(minIndex) = min(backoff(minIndex)*2^randi(maxBackoff), slotTime*(2^maxBackoff-1)); else % 数据包传输成功 successful = successful + 1; % 更新退避时间 backoff(minIndex) = slotTime*2^(priority(minIndex)-1); end % 更新时间 t = minTime + packetSize/transmissionRate + 2*distance/transmissionRate; end % 计算时延 delay = t/N - packetSize/transmissionRate - 2*distance/transmissionRate; fprintf('节点数量:%d,时延:%f ms,碰撞次数:%d\n', N, delay*1000, collisions); end

%%%%遗传算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%%%%%%% clc clear close all load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 %% %遗传参数 NIND=100; %种群大小 MAXGEN=200; %最大遗传代数 Pc=0.9; %交叉概率 Pm=0.05; %变异概率 GGAP=0.9; %代沟 %% %初始化种群 Chrom=InitPop(NIND,N); %% %画出随机解的路径图 DrawPath(Chrom(1,:),X) pause(0.1) %% %输出随机解的路径和总距离 disp('初始种群中的一个随机值:') Outputpath(Chrom(1,:)); Rlength=Pathlength(D,Chrom(1,:)); disp(['总距离:',num2str(Rlength)]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') %% %优化 gen=0; figure; hold on; box on; xlim([0,MAXGEN]) title('优化过程') xlabel('代数') ylabel('最优值') ObjV=Pathlength(D,Chrom); PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %%输出最优解的路径和总距离 disp('最优解:') p=Outputpath(Chrom(minTnd(1),:)); disp(['总距离:',num2str(ObjV(minTnd(1)))]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')

% 通信系统仿真 clear all; close all; clc; % 参数设置 N = 1023; % Kasami序列长度 EbNo = 0:10; % 信噪范围 nBits = 40000; % 比特数 % 霍夫曼编码/译码 symbols = unique([0, 1]); p = [0.5, 0.5]; dict = huffmandict(symbols, p); % 循环码信道编码/译码 n = 15; % 码字长度 k = 4; % 信息长度 t=9; genPoly = cyclpoly(n-k+1, k, 'min'); trellis = poly2trellis(t, genPoly); enc = comm.ConvolutionalEncoder('TrellisStructure', trellis); dec = comm.ViterbiDecoder('TrellisStructure', trellis, 'InputFormat', 'Hard'); % GMSK调制/解调 modulator = comm.GMSKModulator('BitInput', true); demodulator = comm.GMSKDemodulator('BitOutput', true); % 高斯白噪声信道 channel = comm.AWGNChannel('BitsPerSymbol', log2(2), 'NoiseMethod', 'Signal to noise ratio (Eb/No)'); % 误码率计算 berCalc = comm.ErrorRate; % 仿真 for i = 1:length(EbNo) channel.EbNo = EbNo(i); while berCalc.NumErrors < 100 % 信源产生 data = kasami(N, i); % 霍夫曼编码 huffEncodedData = huffmanenco(data, dict); % 信道编码 encodedData = step(enc, huffEncodedData); % 调制 modSignal = step(modulator, encodedData); % 信道 noisySignal = step(channel, modSignal); % 解调 demodSignal = step(demodulator, noisySignal); % 信道译码 decodedData = step(dec, demodSignal); % 霍夫曼译码 huffDecodedData = huffmandeco(decodedData, dict); % 误码率计算 berCalc = step(berCalc, data, huffDecodedData); end ber(i) = berCalc(1); reset(berCalc); end % 画图 figure; semilogy(EbNo, ber, 'bo-'); grid on; xlabel('Eb/No (dB)'); ylabel('BER'); title('BER vs. Eb/No for Kasami-GMSK System'); % 生成Kasami序列 function y = kasami(N, index) if index < 1 || index > N error('Invalid index'); end x = de2bi(index-1, log2(N), 'left-msb'); y = zeros(1, N); for i = 1:N y(i) = 1 - 2*mod(sum(x.*circshift(x,[0 i-1])), 2); end end先生成一次kasami序列,将其作为霍夫曼编码的输入,得到的输出作为循环码的输出

最新推荐

recommend-type

DS_CDMA通信系统\DS_CDMA 仿真源程序.doc

DS-CDMA 通信系统 Matlab 仿真程序 DS-CDMA(Direct Sequence Code Division Multiple Access,直序码分多址接入)是一种基于扩频技术的多址接入方法,在通信系统中具有广泛的应用。本文提供了一个基于 Matlab 的 ...
recommend-type

利用MATLAB计算分形维数

利用 MATLAB 计算分形维数 在图像处理领域中,分形维数是衡量图像复杂度的重要指标。本文将介绍如何使用 MATLAB 计算二维图像的分形维数,并对分形维数的计算过程进行详细解释。 分形维数的定义 分形维数...
recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建